
LECTURE NOTES  

 

ON 

 
WEB TECHNOLOGIES 
ACADEMIC YEAR 2021-22 

 
 

III B.Tech.–II SEMESTER (R19) 

 

 
G.K.HAVILAH, Assistant Professor 

 

 

 
 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING  

 

 
V S M COLLEGE OF ENGINEERING 

RAMCHANDRAPURAM 

E.G DISTRICT 

533255 
 

 

  

 

 

 

 



III Year – II Semester 
 L T P C 

3 0 0 3 

WEB TECHNOLOGIES 

Course Objectives: 

From the course the student will learn 

 Translate user requirements into the overall architecture and implementation 

of new systems and Manage Project and coordinate with the Client 

 Write backend code in PHP language and Writing optimized front end code 

HTML and JavaScript 

 Understand, create and debug database related queries and Create test code to 

validate the applications against client requirement 

 Monitor the performance of web applications & infrastructure and 
Troubleshooting web application with a fast and accurate a resolution 

Course Outcomes: 

 Illustrate the basic concepts of HTML and CSS & apply those concepts to 

design static web pages 

 Identify and understand various concepts related to dynamic web pages and 

validate them using JavaScript 

 Outline the concepts of Extensible markup language & AJAX 

 Develop web Applications using Scripting Languages & Frameworks 

 Create and deploy secure, usable database driven web applications using PHP and 

RUBY 

UNIT I 

HTML: Basic Syntax, Standard HTML Document Structure, Basic Text Markup, Html 

styles, Elements, Attributes, Heading, Layouts, Html media, Iframes Images, 

Hypertext Links, Lists, Tables, Forms, GET and POST method, HTML 5, Dynamic 

HTML. 

CSS: Cascading style sheets, Levels of Style Sheets, Style Specification Formats, 

Selector Forms, The Box Model, Conflict Resolution, CSS3. 

UNIT II 

Javascript - Introduction to Javascript, Objects, Primitives Operations and Expressions, 

Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular 

Expressions, Fundamentals of Angular JS and NODE JS Angular Java Script- 

Introduction to Angular JS Expressions: ARRAY, Objects, Strings, Angular JS Form 

Validation & Form Submission. 

Node.js- Introduction, Advantages, Node.js Process Model, Node JS Modules, Node 

JS File system, Node JS URL module, Node JS Events. 

UNIT III 

Working with XML: Document type Definition (DTD), XML schemas, XSLT, 

Document object model, Parsers - DOM and SAX. 

AJAX A New Approach: Introduction to AJAX, Basics of AJAX, XML Http Request 

Object, AJAX UI tags, Integrating PHP and AJAX. 

 



UNIT IV 

PHP Programming: Introduction to PHP, Creating PHP script, Running PHP script. 

Working with variables and constants: Using variables, Using constants, Data types, 

Operators. Controlling program flow: Conditional statements, Control statements, 

Arrays, functions. 

 

    UNIT V 
Web Servers- IIS (XAMPP, LAMP) and Tomcat Servers. Java Web Technologies-

Introduction to Servlet, Life cycle of Servlet, Servlet methods, Java Server Pages. 

Database connectivity – Servlets, JSP, PHP, Practice of SQL 

Queries. Introduction to Mongo DB and JQuery. 

Web development frameworks – Introduction to Ruby, Ruby Scripting, Ruby on rails –

Design, Implementation and Maintenance aspects. 

Text Books: 

1) Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013. 

2) Web Technologies, 1st Edition 7th impression, Uttam K Roy, Oxford, 2012. 

3) Pro Mean Stack Development, 1st Edition, ELad Elrom, Apress O’Reilly, 2016 

4) Java Script & jQuery the missing manual, 2nd Edition, David sawyer 

mcfarland, O’Reilly, 2011. 

5) Web Hosting for Dummies, 1st Edition, Peter Pollock, John Wiley & Sons, 2013. 

6) RESTful web services, 1st Edition, Leonard Richardson, Ruby, O’Reilly, 2007. 

Reference Books: 

1) Ruby on Rails Up and Running, Lightning fast Web development, 1st

Edition, Bruce Tate, Curt Hibbs, Oreilly, 2006. 

2) Programming Perl, 4th Edition, Tom Christiansen, Jonathan Orwant, O’Reilly, 2012. 

3) Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, 

Black book, 1st Edition, Dream Tech, 2009. 

4) An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, 

Sanda S Katila, Cengage Learning, 2003. 

 
 



























































































































































































































AngularJS is a very powerful JavaScript Framework. It is used in Single Page 

Application (SPA) projects. It extends HTML DOM with additional attributes and 

makes it more responsive to user actions. AngularJS is open source, completely 

free, and used by thousands of developers around the world. It is licensed under the 

Apache license version 2.0. 

Why to Learn AngularJS? 

AngularJS is an open-source web application framework. It was originally 

developed in 2009 by Misko Hevery and Adam Abrons. It is now maintained by 

Google. Its latest version is 1.2.21. 

 AngularJS is a efficient framework that can create Rich Internet 

Applications (RIA). 

 AngularJS provides developers an options to write client side applications 

using JavaScript in a clean Model View Controller (MVC) way. 

 Applications written in AngularJS are cross-browser compliant. AngularJS 

automatically handles JavaScript code suitable for each browser. 

 AngularJS is open source, completely free, and used by thousands of 

developers around the world. It is licensed under the Apache license version 

2.0. 

Overall, AngularJS is a framework to build large scale, high-performance, and 

easyto-maintain web applications. 

AngularJS is an open-source web application framework. It was originally 

developed in 2009 by Misko Hevery and Adam Abrons. It is now maintained by 

Google. Its latest version is 1.2.21. 

 

General Features 

The general features of AngularJS are as follows − 

 AngularJS is a efficient framework that can create Rich Internet 

Applications (RIA). 

 AngularJS provides developers an options to write client side applications 

using JavaScript in a clean Model View Controller (MVC) way. 



 Applications written in AngularJS are cross-browser compliant. AngularJS 

automatically handles JavaScript code suitable for each browser. 

 AngularJS is open source, completely free, and used by thousands of 

developers around the world. It is licensed under the Apache license version 

2.0. 

Overall, AngularJS is a framework to build large scale, high-performance, and 

easyto-maintain web applications. 

Core Features 

The core features of AngularJS are as follows − 

 Data-binding − It is the automatic synchronization of data between model 

and view components. 

 Scope − These are objects that refer to the model. They act as a glue 

between controller and view. 

 Controller − These are JavaScript functions bound to a particular scope. 

 Services − AngularJS comes with several built-in services such as $http to 

make a XMLHttpRequests. These are singleton objects which are 

instantiated only once in app. 

 Filters − These select a subset of items from an array and returns a new 

array. 

 Directives − Directives are markers on DOM elements such as elements, 

attributes, css, and more. These can be used to create custom HTML tags 

that serve as new, custom widgets. AngularJS has built-in directives such as 

ngBind, ngModel, etc. 

 Templates − These are the rendered view with information from the 

controller and model. These can be a single file (such as index.html) or 

multiple views in one page using partials. 

 Routing − It is concept of switching views. 

 Model View Whatever − MVW is a design pattern for dividing an 

application into different parts called Model, View, and Controller, each 

with distinct responsibilities. AngularJS does not implement MVC in the 

traditional sense, but rather something closer to MVVM (Model-View-

ViewModel). The Angular JS team refers it humorously as Model View 

Whatever. 



 Deep Linking − Deep linking allows to encode the state of application in 

the URL so that it can be bookmarked. The application can then be restored 

from the URL to the same state. 

 Dependency Injection − AngularJS has a built-in dependency injection 

subsystem that helps the developer to create, understand, and test the 

applications easily. 

Concepts 

The following diagram depicts some important parts of AngularJS which we will 

discuss in detail in the subsequent chapters. 

 

Advantages of AngularJS 

The advantages of AngularJS are − 

 It provides the capability to create Single Page Application in a very clean 

and maintainable way. 

 It provides data binding capability to HTML. Thus, it gives user a rich and 

responsive experience. 

 AngularJS code is unit testable. 

 AngularJS uses dependency injection and make use of separation of 

concerns. 

 AngularJS provides reusable components. 

 With AngularJS, the developers can achieve more functionality with short 

code. 

 In AngularJS, views are pure html pages, and controllers written in 

JavaScript do the business processing. 

On the top of everything, AngularJS applications can run on all major browsers 

and smart phones, including Android and iOS based phones/tablets. 

Disadvantages of AngularJS 

Though AngularJS comes with a lot of merits, here are some points of concern − 



 Not Secure − Being JavaScript only framework, application written in 

AngularJS are not safe. Server side authentication and authorization is must 

to keep an application secure. 

 Not degradable − If the user of your application disables JavaScript, then 

nothing would be visible, except the basic page. 

AngularJS Directives 

The AngularJS framework can be divided into three major parts − 

 ng-app − This directive defines and links an AngularJS application to 

HTML. 

 ng-model − This directive binds the values of AngularJS application data to 

HTML input controls. 

 ng-bind − This directive binds the AngularJS application data to HTML 

tags. 

AngularJS – Expressions 

Expressions are used to bind application data to HTML. Expressions are written 

inside double curly braces such as in {{ expression}}. Expressions behave similar 

to ngbind directives. AngularJS expressions are pure JavaScript expressions and 

output the data where they are used. 

Using numbers 

<p>Expense on Books : {{cost * quantity}} Rs</p> 

Using Strings 

<p>Hello {{student.firstname + " " + student.lastname}}!</p> 

Using Object 

<p>Roll No: {{student.rollno}}</p> 

Using Array 

<p>Marks(Math): {{marks[3]}}</p> 



Example 

The following example shows the use of all the above-mentioned expressions − 

testAngularJS.htm 

<html> 

   <head> 

      <title>AngularJS Expressions</title> 

   </head> 

    

   <body> 

      <h1>Sample Application</h1> 

       

      <div ng-app = "" ng-init = "quantity = 1;cost = 30;  

         student = {firstname:'Mahesh',lastname:'Parashar',rollno:101}; 

         marks = [80,90,75,73,60]"> 

         <p>Hello {{student.firstname + " " + student.lastname}}!</p> 

         <p>Expense on Books : {{cost * quantity}} Rs</p> 

         <p>Roll No: {{student.rollno}}</p> 

         <p>Marks(Math): {{marks[3]}}</p> 

      </div> 

       

      <script src = 

"https://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js"> 

      </script> 

       

   </body> 

</html> 

Output 

Open the file testAngularJS.htm in a web browser and see the result. 

AngularJS Forms 

 

Forms in AngularJS provides data-binding and validation of input controls. 

 



Input Controls 

Input controls are the HTML input elements: 

 input elements 

 select elements 

 button elements 

 textarea elements 

 

Data-Binding 

Input controls provides data-binding by using the ng-model directive. 

<input type="text" ng-model="firstname"> 

The application does now have a property named firstname. 

The ng-model directive binds the input controller to the rest of your application. 

The property firstname, can be referred to in a controller: 

Example 

<script> 

var app = angular.module('myApp', []); 

app.controller('formCtrl', function($scope) { 

  $scope.firstname = "John"; 

}); 

</script> 

Example 

<form> 

  First Name: <input type="text" ng-model="firstname"> 

</form> 



 

<h1>You entered: {{firstname}}</h1> 

 

Checkbox 

A checkbox has the value true or false. Apply the ng-model directive to a 

checkbox, and use its value in your application. 

Example 

Show the header if the checkbox is checked: 

 <form> 

  Check to show a header: 

  <input type="checkbox" ng-model="myVar"> 

</form> 

 

<h1 ng-show="myVar">My Header</h1

 

Radiobuttons 

Bind radio buttons to your application with the ng-model directive. 

Radio buttons with the same ng-model can have different values, but only the 

selected one will be used. 

Example 

Display some text, based on the value of the selected radio button: 

<form> 

  Pick a topic: 

  <input type="radio" ng-model="myVar" value="dogs">Dogs 

  <input type="radio" ng-model="myVar" value="tuts">Tutorials 



  <input type="radio" ng-model="myVar" value="cars">Cars 

</form> 

 

Selectbox 

Bind select boxes to your application with the ng-model directive. 

The property defined in the ng-model attribute will have the value of the selected 

option in the selectbox. 

 Example 

Display some text, based on the value of the selected option: 

<form> 

  Select a topic: 

  <select ng-model="myVar"> 

    <option value=""> 

    <option value="dogs">Dogs 

    <option value="tuts">Tutorials 

    <option value="cars">Cars 

  </select> 

</form> 

 

An AngularJS Form Example 

First Name: 

 
Last Name: 

 



 

RESET 

form = {"firstName":"John","lastName":"Doe"} 

master = {"firstName":"John","lastName":"Doe"} 

 

Application Code 

<div ng-app="myApp" ng-controller="formCtrl"> 

  <form novalidate> 

    First Name:<br> 

    <input type="text" ng-model="user.firstName"><br> 

    Last Name:<br> 

    <input type="text" ng-model="user.lastName"> 

    <br><br> 

    <button ng-click="reset()">RESET</button> 

  </form> 

  <p>form = {{user}}</p> 

  <p>master = {{master}}</p> 

</div> 

 

<script> 

var app = angular.module('myApp', []); 

app.controller('formCtrl', function($scope) { 

  $scope.master = {firstName: "John", lastName: "Doe"}; 

  $scope.reset = function() { 

    $scope.user = angular.copy($scope.master); 

  }; 

  $scope.reset(); 

}); 

</script> 



 

Example Explained 

The ng-app directive defines the AngularJS application. 

The ng-controller directive defines the application controller. 

The ng-model directive binds two input elements to the user object in the model. 

The formCtrl controller sets initial values to the master object, and defines 

the reset() method. 

The reset() method sets the user object equal to the master object. 

The ng-click directive invokes the reset() method, only if the button is clicked. 

The novalidate attribute is not needed for this application, but normally you will 

use it in AngularJS forms, to override standard HTML5 validation 

AngularJS Form Validation

AngularJS can validate input data. 

Form Validation 

AngularJS offers client-side form validation. 

AngularJS monitors the state of the form and input fields (input, textarea, select), 

and lets you notify the user about the current state. 

AngularJS also holds information about whether they have been touched, or 

modified, or not. 

You can use standard HTML5 attributes to validate input, or you can make your 

own validation functions. 

Client-side validation cannot alone secure user input. Server side validation is also 

necessary. 



 

Required 

Use the HTML5 attribute required to specify that the input field must be filled out: 

Example 

The input field is required: 

<form name="myForm"> 

  <input name="myInput" ng-model="myInput" required> 

</form> 

 

<p>The input's valid state is:</p> 

<h1>{{myForm.myInput.$valid}}</h1> 

E-mail 

Use the HTML5 type email to specify that the value must be an e-mail: 

Example 

The input field has to be an e-mail: 

<form name="myForm"> 

  <input name="myInput" ng-model="myInput" type="email"> 

</form> 

 

<p>The input's valid state is:</p> 

<h1>{{myForm.myInput.$valid}}</h1> 

Form State and Input State 

AngularJS is constantly updating the state of both the form and the input fields. 

Input fields have the following states: 

 $untouched The field has not been touched yet 

 $touched The field has been touched 



 $pristine The field has not been modified yet 

 $dirty The field has been modified 

 $invalid The field content is not valid 

 $valid The field content is valid 

They are all properties of the input field, and are either true or false. 

Forms have the following states: 

 $pristine No fields have been modified yet 

 $dirty One or more have been modified 

 $invalid The form content is not valid 

 $valid The form content is valid 

 $submitted The form is submitted 

They are all properties of the form, and are either true or false. 

You can use these states to show meaningful messages to the user. Example, if a 

field is required, and the user leaves it blank, you should give the user a warning: 

Example 

Show an error message if the field has been touched AND is empty: 

<input name="myName" ng-model="myName" required> 

<span ng-show="myForm.myName.$touched && 

myForm.myName.$invalid">The name is required.</span> 

 

CSS Classes 

AngularJS adds CSS classes to forms and input fields depending on their states. 

The following classes are added to, or removed from, input fields: 

 ng-untouched The field has not been touched yet 

 ng-touched The field has been touched 

 ng-pristine The field has not been  modified yet 



 ng-dirty The field has been modified 

 ng-valid The field content is valid 

 ng-invalid The field content is not valid 

 ng-valid-key One key for each validation. Example: ng-valid-required, useful 

when there are more than one thing that must be validated 

 ng-invalid-key Example: ng-invalid-required 

The following classes are added to, or removed from, forms: 

 ng-pristine No fields has not been modified yet 

 ng-dirty One or more fields has been modified 

 ng-valid The form content is valid 

 ng-invalid The form content is not valid 

 ng-valid-key One key for each validation. Example: ng-valid-required, useful 

when there are more than one thing that must be validated 

 ng-invalid-key Example: ng-invalid-required 

The classes are removed if the value they represent is false. 

Add styles for these classes to give your application a better and more intuitive 

user interface. 

Example 

Apply styles, using standard CSS: 

<style> 

input.ng-invalid { 

  background-color: pink; 

} 

input.ng-valid { 

  background-color: lightgreen; 

} 

 

</style> 

 



 

 

Forms can also be styled: 

Example 

Apply styles for unmodified (pristine) forms, and for modified forms: 

<style> 

form.ng-pristine { 

  background-color: lightblue; 

} 

form.ng-dirty { 

  background-color: pink; 

} 

 

</style>

 

Custom Validation 

To create your own validation function is a bit more tricky; You have to add a new 

directive to your application, and deal with the validation inside a function with 

certain specified arguments. 

Example 

Create your own directive, containing a custom validation function, and refer to it 

by using my-directive. 

The field will only be valid if the value contains the character "e": 

<form name="myForm"> 

<input name="myInput" ng-model="myInput" required my-directive> 

</form> 



 

<script> 

var app = angular.module('myApp', []); 

app.directive('myDirective', function() { 

  return { 

    require: 'ngModel', 

    link: function(scope, element, attr, mCtrl) { 

      function myValidation(value) { 

        if (value.indexOf("e") > -1) { 

          mCtrl.$setValidity('charE', true); 

        } else { 

          mCtrl.$setValidity('charE', false); 

        } 

        return value; 

      } 

      mCtrl.$parsers.push(myValidation); 

    } 

  }; 

}); 

 

</script> 

Example Explained: 

In HTML, the new directive will be referred to by using the attribute my-directive. 

In the JavaScript we start by adding a new directive named myDirective. 

Remember, when naming a directive, you must use a camel case 

name, myDirective, but when invoking it, you must use - separated name, my-

directive. 

Then, return an object where you specify that we require  ngModel, which is the 

ngModelController. 



Make a linking function which takes some arguments, where the fourth 

argument, mCtrl, is the ngModelController, 

Then specify a function, in this case named myValidation, which takes one 

argument, this argument is the value of the input element. 

Test if the value contains the letter "e", and set the validity of the model controller 

to either true or false. 

At last, mCtrl.$parsers.push(myValidation); will add the myValidation function to 

an array of other functions, which will be executed every time the input value 

change

 

Validation Example 

<!DOCTYPE html> 

<html> 

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">

</script> 

<body> 

 

<h2>Validation Example</h2> 

 

<form  ng-app="myApp"  ng-controller="validateCtrl" 

name="myForm" novalidate> 

 

<p>Username:<br> 

  <input type="text" name="user" ng-model="user" required> 

  <span style="color:red" ng-show="myForm.user.$dirty && 

myForm.user.$invalid"> 

  <span ng-show="myForm.user.$error.required">Username is required.</span> 

  </span> 

</p> 

 

<p>Email:<br> 

  <input type="email" name="email" ng-model="email" required> 



  <span style="color:red" ng-show="myForm.email.$dirty && 

myForm.email.$invalid"> 

  <span ng-show="myForm.email.$error.required">Email is required.</span> 

  <span ng-show="myForm.email.$error.email">Invalid email address.</span> 

  </span> 

</p> 

 

<p> 

  <input type="submit" 

  ng-disabled="myForm.user.$dirty && myForm.user.$invalid || 

  myForm.email.$dirty && myForm.email.$invalid"> 

</p> 

 

</form> 

 

<script> 

var app = angular.module('myApp', []); 

app.controller('validateCtrl', function($scope) { 

  $scope.user = 'John Doe'; 

  $scope.email = 'john.doe@gmail.com'; 

}); 

</script> 

 

</body> 

</html> 

Example Explained 

The AngularJS directive ng-model binds the input elements to the model. 

The model object has two properties: user and email. 

Because of ng-show, the spans with color:red are displayed only when user or 

email is $dirty and $invalid. 

 



 

What is Angular JS Expressions? 

Expressions are variables which were defined in the double braces {{ }}. They are 

very commonly used within Angular JS, and you would see them in our previous 

tutorials. 

In this tutorial, you will learn- 

 Explain Angular.js Expressions with example 

 AngularJS Numbers 

 AngularJS Strings 

 AngularJS Objects 

 AngularJS Arrays 

AngularJS Strings 

Expressions can be used to work with strings as well. Let’s look at an example of 

Angular JS expressions with strings. 

In this example, we are going to define 2 strings of “firstName” and “lastName” 

and display them using expressions accordingly. 

 

https://www.guru99.com/angularjs-expressions.html#1
https://www.guru99.com/angularjs-expressions.html#2
https://www.guru99.com/angularjs-expressions.html#3
https://www.guru99.com/angularjs-expressions.html#4
https://www.guru99.com/angularjs-expressions.html#5


<!DOCTYPE html> 

<html> 

<head> 

    <meta chrset="UTF 8"> 

    <title>Event Registration</title> 

 

</head> 

<body> 

 

    <script src="https://code.angularjs.org/1.6.9/angular-route.js"></script> 

    <script src="https://code.angularjs.org/1.6.9/angular.min.js"></script> 

 

    <h1> Guru99 Global Event</h1> 

 

    <div ng-app="" ng-init="firstName='Guru';lastName='99'"> 

 

        &nbsp;&nbsp;&nbsp; 

        First Name : {{firstName}}<br>&nbsp;&nbsp;&nbsp; 

        last Name : {{lastName}} 

 

    </div> 

 

</body> 

</html> 

AngularJS Strings 

Expressions can be used to work with strings as well. Let’s look at an example of 

Angular JS expressions with strings. 

In this example, we are going to define 2 strings of “firstName” and “lastName” 

and display them using expressions accordingly. 



 

<!DOCTYPE html> 

<html> 

<head> 

    <meta chrset="UTF 8"> 

    <title>Event Registration</title> 

 

</head> 

<body> 

 

    <script src="https://code.angularjs.org/1.6.9/angular-route.js"></script> 

    <script src="https://code.angularjs.org/1.6.9/angular.min.js"></script> 

 

    <h1> Guru99 Global Event</h1> 

 

    <div ng-app="" ng-init="firstName='Guru';lastName='99'"> 

 

        &nbsp;&nbsp;&nbsp; 

        First Name : {{firstName}}<br>&nbsp;&nbsp;&nbsp; 

        last Name : {{lastName}} 

 

    </div> 

 

</body> 

</html> 

Code Explanation: 



1. The ng-init directive is used define the variables firstName with the value 

“Guru” and the variable lastName with the value of “99”. 

2. We are then using expressions of {{firstName}} and {{lastName}} to 

access the value of these variables and display them in the view accordingly. 

If the code is executed successfully, the following Output will be shown when you 

run your code in the browser. 

Output: 

 

From the output, it can be clearly seen that the values of firstName and lastName 

are displayed on the screen. 

Angular.JS Objects 

Expressions can be used to work with JavaScript objects as well. 

Let’s look at an example of Angular.JS expressions with javascript objects. A 

javascript object consists of a name-value pair. 

Below is an example of the syntax of a javascript object. 

Syntax: 

var car = {type:"Ford", model:"Explorer", color:"White"}; 

https://www.guru99.com/interactive-javascript-tutorials.html


In this example, we are going to define one object as a person object which will 

have 2 key value pairs of “firstName” and “lastName”. 

 

<!DOCTYPE html> 

<html> 

<head> 

    <meta chrset="UTF 8"> 

    <title>Event Registration</title> 

 

</head> 

<body> 

 

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script> 

<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script> 

 

<h1> Guru99 Global Event</h1> 

 

<div ng-app="" ng-init="person={firstName:'Guru',lastName:'99'}"> 

 

    &nbsp;&nbsp;&nbsp; 

    First Name : {{person.firstName}}<br>&nbsp;&nbsp;&nbsp; 

    Last Name : {{person.lastName}} 

 



</div> 

 

</body> 

</html> 

Code Explanation: 

1. The ng-init directive is used to define the object person which in turn has 

key value pairs of firstName with the value “Guru” and the variable 

lastName with the value of “99”. 

2. We are then using expressions of {{person.firstName}} and 

{{person.secondName}} to access the value of these variables and display 

them in the view accordingly. Since the actual member variables are part of 

the object person, they have to access it with the dot (.) notation to access 

their actual value. 

If the code is executed successfully, the following Output will be shown when you 

run your code in the browser. 

Output: 

 

From the output, 

 It can be clearly seen that the values of “firstName” and “secondName” are 

displayed on the screen. 



AngularJS Arrays 

Expressions can be used to work with arrays as well. Let’s look at an example of 

Angular JS expressions with arrays. 

In this example, we are going to define an array which is going to hold the marks 

of a student in 3 subjects. In the view, we will display the value of these marks 

accordingly. 

 

<!DOCTYPE html> 

<html> 

<head> 

    <meta chrset="UTF 8"> 

    <title>Event Registration</title> 

</head> 

<body> 

 

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script> 

<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script> 

 



<h1> Guru99 Global Event</h1> 

 

<div ng-app="" ng-init="marks=[1,15,19]"> 

 

    Student Marks<br>&nbsp;&nbsp;&nbsp; 

    Subject1 : {{marks[0] }}<br>&nbsp;&nbsp;&nbsp; 

    Subject2 : {{marks[1] }}<br>&nbsp;&nbsp;&nbsp; 

    Subject3 : {{marks[2] }}<br>&nbsp;&nbsp;&nbsp; 

</div> 

 

</body> 

</html> 

Code Explanation: 

1. The ng-init directive is used define the array with the name “marks” with 3 

values of 1, 15 and 19. 

2. We are then using expressions of marks [index] to access each element of 

the array. 

If the code is executed successfully, the following Output will be shown when you 

run your code in the browser. 

Output: 

 

From the output, it can be clearly seen that the marks being displayed, that are 

defined in the array. 

 

 



 

 

 

 

 

NODEJS 

Node.js tutorial provides basic and advanced concepts of Node.js. Our Node.js 

tutorial is designed for beginners and professionals both. 

Node.js is a cross-platform environment and library for running JavaScript 

applications which is used to create networking and server-side applications. 

Our Node.js tutorial includes all topics of Node.js such as Node.js installation on 

windows and linux, REPL, package manager, callbacks, event loop, os, path, query 

string, cryptography, debugger, URL, DNS, Net, UDP, process, child processes, 

buffers, streams, file systems, global objects, web modules etc. There are also 

given Node.js interview questions to help you better understand the Node.js 

technology. 

What is Node.js 

Node.js is a cross-platform runtime environment and library for running JavaScript 

applications outside the browser. It is used for creating server-side and networking 

web applications. It is open source and free to use.  

Many of the basic modules of Node.js are written in JavaScript. Node.js is mostly 

used to run real-time server applications. 

The definition given by its official documentation is as follows: 

?Node.js is a platform built on Chrome's JavaScript runtime for easily building fast 

and scalable network applications. Node.js uses an event-driven, non-blocking I/O 

model that makes it lightweight and efficient, perfect for data-intensive real-time 

applications that run across distributed devices.? 

Node.js also provides a rich library of various JavaScript modules to simplify the 

development of web applications. 

1. Node.js = Runtime Environment + JavaScript Library   



Different parts of Node.js 

The following diagram specifies some important parts of Node.js: 

 

Features of Node.js 

Following is a list of some important features of Node.js that makes it the first 

choice of software architects. 

1. Extremely fast: Node.js is built on Google Chrome's V8 JavaScript Engine, 

so its library is very fast in code execution. 

2. I/O is Asynchronous and Event Driven: All APIs of Node.js library are 

asynchronous i.e. non-blocking. So a Node.js based server never waits for an 

API to return data. The server moves to the next API after calling it and a 

notification mechanism of Events of Node.js helps the server to get a 

response from the previous API call. It is also a reason that it is very fast. 



3. Single threaded: Node.js follows a single threaded model with event 

looping. 

4. Highly Scalable: Node.js is highly scalable because event mechanism helps 

the server to respond in a non-blocking way. 

5. No buffering: Node.js cuts down the overall processing time while 

uploading audio and video files. Node.js applications never buffer any data. 

These applications simply output the data in chunks. 

6. Open source: Node.js has an open source community which has produced 

many excellent modules to add additional capabilities to Node.js 

applications. 

7. License: Node.js is released under the MIT license. 

 Node.js Process Model 

In this section, we will learn about the Node.js process model and understand 

why we should use Node.js. 

Traditional Web Server Model 

In the traditional web server model, each request is handled by a dedicated 

thread from the thread pool. If no thread is available in the thread pool at any 

point of time then the request waits till the next available thread. Dedicated 

thread executes a particular request and does not return to thread pool until it 

completes the execution and returns a response. 



Traditional Web Server Model 

Node.js Process Model 

Node.js processes user requests differently when compared to a traditional web 

server model. Node.js runs in a single process and the application code runs in a 

single thread and thereby needs less resources than other platforms. All the user 

requests to your web application will be handled by a single thread and all the 

I/O work or long running job is performed asynchronously for a particular 

request. So, this single thread doesn't have to wait for the request to complete 

and is free to handle the next request. When asynchronous I/O work completes 

then it processes the request further and sends the response. 

An event loop is constantly watching for the events to be raised for an 

asynchronous job and executing callback function when the job completes. 

Internally, Node.js uses libev for the event loop which in turn uses internal C++ 

thread pool to provide asynchronous I/O. 

The following figure illustrates asynchronous web server model using Node.js. 

https://www.tutorialsteacher.com/Content/images/nodejs/traditional-web-server-model.png
https://www.tutorialsteacher.com/Content/images/nodejs/traditional-web-server-model.png
http://software.schmorp.de/pkg/libev.html


Node.js Process Model 

Node.js process model increases the performance and scalability with a few 

caveats. Node.js is not fit for an application which performs CPU-intensive 

operations like image processing or other heavy computation work because it 

takes time to process a request and thereby blocks the single thread. 

Node.js Module 

Module in Node.js is a simple or complex functionality organized in single or 

multiple JavaScript files which can be reused throughout the Node.js application. 

Each module in Node.js has its own context, so it cannot interfere with other 

modules or pollute global scope. Also, each module can be placed in a separate 

.js file under a separate folder. 

Node.js implements CommonJS modules standard. CommonJS is a group of 

volunteers who define JavaScript standards for web server, desktop, and console 

application. 

Node.js Module Types 

https://www.tutorialsteacher.com/Content/images/nodejs/nodejs-process-model.png
https://www.tutorialsteacher.com/Content/images/nodejs/nodejs-process-model.png
http://requirejs.org/docs/commonjs.html


Node.js includes three types of modules: 

1. Core Modules 

2. Local Modules 

3. Third Party Modules 

Node.js Core Modules 

Node.js is a light weight framework. The core modules include bare minimum 

functionalities of Node.js. These core modules are compiled into its binary 

distribution and load automatically when Node.js process starts. However, you 

need to import the core module first in order to use it in your application. 

The following table lists some of the important core modules in Node.js. 

Core Module Description 

http  http module includes classes, methods and events to create Node.js http server. 

url url module includes methods for URL resolution and parsing. 

querystring  querystring module includes methods to deal with query string. 

path path module includes methods to deal with file paths. 

fs  fs module includes classes, methods, and events to work with file I/O. 

util  util module includes utility functions useful for programmers. 

Loading Core Modules 

In order to use Node.js core or NPM modules, you first need to import it using 

require() function as shown below. 

var module = require('module_name'); 

As per above syntax, specify the module name in the require() function. The 

require() function will return an object, function, property or any other 

JavaScript type, depending on what the specified module returns. 

https://nodejs.org/api/http.html
https://nodejs.org/api/url.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/path.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/util.html


The following example demonstrates how to use Node.js http module to create a 

web server. 

Example: Load and Use Core http Module 

 Copy 

var http = require('http'); 

 

var server = http.createServer(function(req, res){ 

 

  //write code here 

 

}); 

 

server.listen(5000);  

In the above example, require() function returns an object because http module 

returns its functionality as an object, you can then use its properties and methods 

using dot notation e.g. http.createServer(). 

Node.js Local Module 

Local modules are modules created locally in your Node.js application. These 

modules include different functionalities of your application in separate files and 

folders. You can also package it and distribute it via NPM, so that Node.js 

community can use it. For example, if you need to connect to MongoDB and 

fetch data then you can create a module for it, which can be reused in your 

application. 

Writing Simple Module 

Let's write simple logging module which logs the information, warning or error 

to the console. 

In Node.js, module should be placed in a separate JavaScript file. So, create a 

Log.js file and write the following code in it. 

Log.js 

 Copy 



var log = { 

            info: function (info) {  

                console.log('Info: ' + info); 

            }, 

            warning:function (warning) {  

                console.log('Warning: ' + warning); 

            }, 

            error:function (error) {  

                console.log('Error: ' + error); 

            } 

    }; 

 

module.exports = log 

In the above example of logging module, we have created an object with three 

functions - info(), warning() and error(). At the end, we have assigned this object 

to module.exports. The module.exports in the above example exposes a log 

object as a module. 

The module.exports is a special object which is included in every JS file in the 

Node.js application by default. Use module.exports or exports to expose a 

function, object or variable as a module in Node.js. 

Now, let's see how to use the above logging module in our application. 

Loading Local Module 

To use local modules in your application, you need to load it using require() 

function in the same way as core module. However, you need to specify the path 

of JavaScript file of the module. 

The following example demonstrates how to use the above logging module 

contained in Log.js. 

app.js 

 Copy 

var myLogModule = require('./Log.js'); 

 

myLogModule.info('Node.js started'); 



In the above example, app.js is using log module. First, it loads the logging 

module using require() function and specified path where logging module is 

stored. Logging module is contained in Log.js file in the root folder. So, we have 

specified the path './Log.js' in the require() function. The '.' denotes a root folder. 

The require() function returns a log object because logging module exposes an 

object in Log.js using module.exports. So now you can use logging module as an 

object and call any of its function using dot notation e.g myLogModule.info() or 

myLogModule.warning() or myLogModule.error() 

Run the above example using command prompt (in Windows) as shown below. 

C:\> node app.js  

Info: Node.js started  

Thus, you can create a local module using module.exports and use it in your 

application. 

Export Module in Node.js 

Here, you will learn how to expose different types as a module using 

module.exports. 

The module.exports is a special object which is included in every JavaScript file 

in the Node.js application by default. The module is a variable that represents the 

current module, and exports is an object that will be exposed as a module. So, 

whatever you assign to module.exports will be exposed as a module. 

Let's see how to expose different types as a module using module.exports. 

Export Literals 

As mentioned above, exports is an object. So it exposes whatever you assigned 

to it as a module. For example, if you assign a string literal then it will expose 

that string literal as a module. 



The following example exposes simple string message as a module in 

Message.js. 

Message.js 

 Copy 

module.exports = 'Hello world'; 

Now, import this message module and use it as shown below. 

app.js 

 Copy 

var msg = require('./Messages.js'); 

 

console.log(msg); 

Run the above example and see the result, as shown below. 

C:\> node app.js  

Hello World  

 Note: 

You must specify ./ as a path of root folder to import a local module. However, you 

do not need to specify the path to import Node.js core modules or NPM modules in 

the require() function. 

Export Object 

The exports is an object. So, you can attach properties or methods to it. The 

following example exposes an object with a string property in Message.js file. 

Message.js 



 Copy 

exports.SimpleMessage = 'Hello world'; 

 

//or 

 

module.exports.SimpleMessage = 'Hello world'; 

In the above example, we have attached a property SimpleMessage to the exports 

object. Now, import and use this module, as shown below. 

app.js 

 Copy 

var msg = require('./Messages.js'); 

 

console.log(msg.SimpleMessage); 

In the above example, the require() function will return an object { 

SimpleMessage : 'Hello World'} and assign it to the msg variable. So, now you 

can use msg.SimpleMessage. 

Run the above example by writing node app.js in the command prompt and see 

the output as shown below. 

C:\> node app.js  

Hello World  

In the same way as above, you can expose an object with function. The 

following example exposes an object with the log function as a module. 

Log.js 

 Copy 

module.exports.log = function (msg) {  



    console.log(msg); 

}; 

The above module will expose an object- { log : function(msg){ 

console.log(msg); } } . Use the above module as shown below. 

app.js 

 Copy 

var msg = require('./Log.js'); 

 

msg.log('Hello World'); 

Run and see the output in command prompt as shown below. 

C:\> node app.js  

Hello World  

You can also attach an object to module.exports, as shown below. 

data.js 

 Copy 

module.exports = { 

    firstName: 'James', 

    lastName: 'Bond' 

} 

app.js 

 Copy 

var person = require('./data.js'); 

console.log(person.firstName + ' ' + person.lastName); 

Run the above example and see the result, as shown below. 



C:\>nodeapp.js  

James Bond  

Node.js File System 

Node.js includes fs module to access physical file system. The fs module is 

responsible for all the asynchronous or synchronous file I/O operations. 

Let's see some of the common I/O operation examples using fs module. 

Reading File 

Use fs.readFile() method to read the physical file asynchronously. 

Signature: 

fs.readFile(fileName [,options], callback) 

Parameter Description: 

 filename: Full path and name of the file as a string. 

 options: The options parameter can be an object or string which can include 

encoding and flag. The default encoding is utf8 and default flag is "r". 

 callback: A function with two parameters err and fd. This will get called 

when readFile operation completes. 

The following example demonstrates reading existing TestFile.txt 

asynchronously. 

Example: Reading File 

 Copy 

var fs = require('fs'); 

 

fs.readFile('TestFile.txt', function (err, data) { 

                    if (err) throw err; 



 

    console.log(data); 

}); 

The above example reads TestFile.txt (on Windows) asynchronously and 

executes callback function when read operation completes. This read operation 

either throws an error or completes successfully. The err parameter contains 

error information if any. The data parameter contains the content of the specified 

file. 

The following is a sample TextFile.txt file. 

TextFile.txt 

 Copy 

This is test file to test fs module of Node.js 

Now, run the above example and see the result as shown below. 

C:\> node server.js  

This is test file to test fs module of Node.js  

Use fs.readFileSync() method to read file synchronously as shown below. 

Example: Reading File Synchronously 

 Copy 

var fs = require('fs'); 

 

var data = fs.readFileSync('dummyfile.txt', 'utf8'); 

console.log(data); 

Writing File 



Use fs.writeFile() method to write data to a file. If file already exists then it 

overwrites the existing content otherwise it creates a new file and writes data 

into it. 

Signature: 

fs.writeFile(filename, data[, options], callback) 

Parameter Description: 

 filename: Full path and name of the file as a string. 

 Data: The content to be written in a file. 

 options: The options parameter can be an object or string which can include 

encoding, mode and flag. The default encoding is utf8 and default flag is "r". 

 callback: A function with two parameters err and fd. This will get called 

when write operation completes. 

The following example creates a new file called test.txt and writes "Hello 

World" into it asynchronously. 

Example: Creating & Writing File 

 Copy 

var fs = require('fs'); 

 

fs.writeFile('test.txt', 'Hello World!', function (err) {  

                        if (err) 

        console.log(err); 

                        else 

        console.log('Write operation complete.'); 

}); 

In the same way, use fs.appendFile() method to append the content to an existing 

file. 

Example: Append File Content 

 Copy 

var fs = require('fs'); 

 



fs.appendFile('test.txt', 'Hello World!', function (err) {  

                        if (err) 

        console.log(err); 

                        else 

        console.log('Append operation complete.'); 

}); 

 

Open File 

Alternatively, you can open a file for reading or writing using fs.open() method. 

Signature: 

fs.open(path, flags[, mode], callback) 

Parameter Description: 

 path: Full path with name of the file as a string. 

 Flag: The flag to perform operation 

 Mode: The mode for read, write or readwrite. Defaults to 0666 readwrite. 

 callback: A function with two parameters err and fd. This will get called 

when file open operation completes. 

Flags 

The following table lists all the flags which can be used in read/write operation. 

Flag Description 

r Open file for reading. An exception occurs if the file does not exist. 

r+ Open file for reading and writing. An exception occurs if the file does not exist. 

rs Open file for reading in synchronous mode. 

rs+ Open file for reading and writing, telling the OS to open it synchronously. See notes for 'rs' about using 

this with caution. 

w Open file for writing. The file is created (if it does not exist) or truncated (if it exists). 



Flag Description 

wx Like 'w' but fails if path exists. 

w+ Open file for reading and writing. The file is created (if it does not exist) or truncated (if it exists). 

wx+ Like 'w+' but fails if path exists. 

a Open file for appending. The file is created if it does not exist. 

ax Like 'a' but fails if path exists. 

a+ Open file for reading and appending. The file is created if it does not exist. 

ax+ Like 'a+' but fails if path exists. 

The following example opens an existing file and reads its content. 

Example:File open and read 

 Copy 

var fs = require('fs'); 

 

fs.open('TestFile.txt', 'r', function (err, fd) { 

     

                            if (err) { 

                            return console.error(err); 

    } 

     

                            var buffr = new Buffer(1024); 

     

    fs.read(fd, buffr, 0, buffr.length, 0, function (err, bytes) { 

        

                            if (err) throw err; 

             

                            // Print only read bytes to avoid junk. 

                            if (bytes > 0) { 

            console.log(buffr.slice(0, bytes).toString()); 

        } 



         

                            // Close the opened file. 

        fs.close(fd, function (err) { 

                            if (err) throw err; 

        }); 

    }); 

}); 

 

Delete File 

Use fs.unlink() method to delete an existing file. 

Signature: 

fs.unlink(path, callback); 

The following example deletes an existing file. 

Example:File Open and Read 

 Copy 

var fs = require('fs'); 

 

fs.unlink('test.txt', function () { 

     

    console.log('write operation complete.'); 

 

}); 

Important method of fs module 

Method Description 

fs.readFile(fileName [,options], callback) Reads existing file. 

fs.writeFile(filename, data[, options], callback) Writes to the file. If file exists then  

overwrite the content otherwise creates 



Method Description 

 new file. 

fs.open(path, flags[, mode], callback) Opens file for reading or writing. 

fs.rename(oldPath, newPath, callback) Renames an existing file. 

fs.chown(path, uid, gid, callback) Asynchronous chown. 

fs.stat(path, callback) Returns fs.stat object which includes  

important file statistics. 

fs.link(srcpath, dstpath, callback) Links file asynchronously. 

fs.symlink(destination, path[, type], callback) Symlink asynchronously. 

fs.rmdir(path, callback) Renames an existing directory. 

fs.mkdir(path[, mode], callback) Creates a new directory. 

fs.readdir(path, callback) Reads the content of the specified  

directory. 

fs.utimes(path, atime, mtime, callback) Changes the timestamp of the file. 

fs.exists(path, callback) Determines whether the specified file exists or not. 

fs.access(path[, mode], callback) Tests a user's permissions for the specified file. 

fs.appendFile(file, data[, options], callback) Appends new content to the existing 

 file. 

 

 

 



 



 

 

 
Introduction to XML: 

 
Unit 3 

Working with XML 

P a g e | 1 

XML stands for eXtensible Markup Language and is a text-based markup language derived from 

Standard Generalized Markup Language (SGML). The primary purpose of this standard is to provide way to 

store self describing data easily. Self-describing data are those that describe both their structure and their 

content. But, HTML documents describe how data should appear on  the  browsers  screen  and  no  

information about the data. XML documents, on the other  hand describe  the meaning of data. The  content  

and structure of XML documents are accessed by software module called XML processor. 

XML Characteristics: 
1. XML is extensible : XML essentially allows you to create your own language, or tags, that suits 

your application. 

2. XML separates data from presentation : XML allows you to store content with regard to how it 

will be presented. 

3. XML is a public standard : XML was developed by an organization called the World Wide Web 

Consortium (W3C) and available as an open standard. 

XML Usage: 

A short list of XML's usage says it all 

 XML can work behind the scene to simplify the creation of HTML documents for large web sites.

 XML can be used to exchange of information between organizations and systems.

 XML can be used for offloading and reloading of databases.

 XML can be used to store and arrange data in a way that is customizable for your needs.

 XML can easily be mixed with stylesheets to create almost any output desired.

XML features: 

 XML allows the user to define his own tags and his own document structure.

 XML document is pure information wrapped in XML tags.

 XML is a text based language, plain text files can be used to share data.

 XML provides a software and hardware independent way of sharing data.

 

XML document structure 
An XML document consists of following parts: 1) Prolog 2) Body 

 

1. Prolog: 
This part of XML document may contain following parts: XML declaration, Optional processing 

instructions, Comments and Document Type Declaration 

XML Declaration: 

Every XML document should start with one-line XML declaration which describes document itself. The 

XML declaration is written as below: 

Syn: <?xml version="1.0" encoding="UTF-8"?> 
Where version is the XML version and encoding  specify the character  encoding used  in the document. UTF- 

8 stands for Unicode Transformation Format is used for set of ASCII characters. It also have standalone 

attribute indicates whether the document can be processed as standalone document or is dependent on other 

document like Document Type Declaration(DTD). 

Syn: <?xml version="1.0" encoding="UTF-8" standalone=”yes|no”?> 

Processing Instruction: 

Processing Instructions starts with left angular bracket along with question mark(<?),ending with 

question mark followed by the right angular bracket(?>). These parameters  instruct  the  application  about 

how to interpret XML document. XML parser’s do not take care of processing instructions and are not text 

portion of XML document. 

Ex: <?xsl-stylesheet href=”simple.xsl” type=”text/xsl”?> 
 

 



 

Comments: 

P a g e | 2 

Like HTML, comments may use anywhere in XML documents. An XML comments starts with <!—and 

ends with -->. Everything with in these will be ignored by the parsers and will not be parsed. 

Syn: <!-- this is comments --> 

Following points should be remembered while using comments: do not use double hyphens, never place 

inside entity declaration or within any tag, never place before XML declaration 

Document Type Declaration(DTD): 

XML allows to create new tags and have meaning if it has some logical structure created using set of 

related tags. <!DOCTYPE > is used to specify the logical structure of XML document  by  imposing  

constraints on what tags can be used and where. DTD may contain Name of root element, reference  to  

external DTD, element and entity declarations. 

 

2. Body: 
This portion of XML document contains textual data marked up by tags. It must have one element 

called Document or Root element, which defines content in the XML document. Root element must be the top- 

level element in the document hierarchy and there can be one and only one root element. 
Ex: <?xml version=”1.0”?> 

<book> 

<title>WT</title> 

<author>Uttam Roy</author> 

<price>500</price> 

</book> 

In this document, the name of root element id <book> which contains sub tags <title>, <author> and 

<price>. Each of these tags contains text “WT”, “Uttam Roy” and “500” respectively.  

 

XML Elements 
An XML element consists of starting tag, an ending tag and its contents and attributes. The contents 

may be simple text or other element or both. XML tags are very much similar to that of HTML tags. A tag 

begins with less than(<) and ends with greater than(>)  character.  It takes  the form <tag-name> and  must  

have corresponding ending tag(</tag-name>). An element consists of opening tag, closing tag and contents. 

Few tag may not contain any content and hence know as Empty elements. According to the well-formedness 

constraint, every XML element must have closing tag. XML provides two ways for XML empty elements as 

follows: 

Syn: <br></br> or <br /> 
Following are the rules that need to be followed for XML elements: 

 An element name can contain any alphanumeric characters. The only punctuation allowed in names 

are the hyphen ( - ), under-score ( _ ) and period ( . )

 Names are case sensitive. For example Address, address, ADDRESS are different names

 Element start and end tag should be identical

 An element which is a container can contain text or elements as seen in the above example 

Attributes: Attributes are used to describe elements or to provide more information about elements. They 

appear in the starting tag of element. The syntax of specifying an attribute in element is:
Syn: <element-name attribute-name=”value”>…</elment-name> 

Ex: <employee gener=”male”>ABCD</employee> 

There is no strict rules that describes when to use elements and when to use attributes. However, it is 

recommended not to use attributes as far as possible due to following reasons: 

 Too many attributes reduce readability of XML document

 Attributes cannot contain multiple values, but elements can

 Attributes are not easily extendable

 Attributes cannot represent logical structure, but elements together with their child elements can

 Attributes are difficult to access by parsers
 

 



 

 Attribute values are not easy to check against DTD

P a g e | 3 

 

Well-formed XML: 
An XML document is said to be well-formed if it contains text and tags that conform with the basic XML well- 

formedness constraints. XML can extend existing documents by creating new elements that fit their 

applications. The only thing is to remember the well-formedness constraints. The following rules must be 

followed by XML documents: 

 An XML document must have one and only one root element

 All tags must be closed

 All tags must be properly nested

 XML tags are case-sensitive

 Attributes must always be quoted

 Certain characters are reserved for processing like pre-defined entities

Pre-defined Entities: W3C specification defined few entities each of which represents a  special character  

that cannot be used in XML document directly. All XML processors must recognize those entities, whether 
they are declared or not. 

Entity Name Entity Number Description Character 

&lt; &#60; Less than < 

&gt; &#62; Greater than > 

&amp; &#38; Amprersand & 

&quot; &#34; Quotation mark “ 

&apos; &#39; Apostrophe ‘ 

 
 

Valid XML 

Well-formed XML documents obey only basic well formedness constraints. So, valid XML documents are 

those that are well formed and comply with rules specified in DTC or Schema. 

 

Name Space 
XML was developed to be used by many applications. If many applications  want  to  communicate  using 

XML documents, problems may occur. In XML document, element and attribute names are selected by 

developers. In some cases two different documents may have same root element. For  example,  both  
client.xml and server.xml contains same root tag <config> as shown below. 

Client.xml Server.xml 

<config> <config> 

<version>1.0</version> <version>1.0</version> 

</config> </config> 

XML namespace provides simple, straightforward way to distinguish between element names in XML 

document. Namespace suggests to use prefix with every element as follows: 

Client.xml Server.xml 

<c:config> <s:config> 

<c:version>1.0</c:version> <s:version>1.0</s:version> 

</c:config> </s:config> 

Uniform Resource Identifier(URI) is used to guarantee the prefixes used by different developers. In general 

URL are used to choose unique name. But, URL must be prefixed for each  tag instead of  them  we  use  

prefix. Prefixes are just shorthand placeholders of URLs. Association of prefix and URL  is  done  in the 

starting tag using reserved XML attribute xmlns. 

Syn: xmlns:prefix=”URI” 
Name Space Rules: The xmlns attribute identifies namespace and makes association between prefix and 

created namespace. Many prefixes may be associated with one namespace. 
 

 
 



a g e | 4 
 

Default Namespace: Namespaces may not  have their associated prefixes and  are called default  namespace. 

In such cases, a blank prefix is assumed for element and all of its descendants. 

 
 

Document Type Declaration (DTD) 

XML Schema languages: 
Schema is an abstract representation of object characteristics and its relationship to other objects. An 

XML schema represents internal relationship between elements and attributes in XML document. It defines 

structure of XML documents by specifying list of valid elements and attributes. XML schema language is a 

formal language to express XML schemas. Most popular and primary schema languages are: DTD and W3C 

Schema. 

 

1. Document Type Declaration(DTD): 
It is one of the several XML schema languages and was introduced as part of XML 1.0. Even though 

DTD is not mandatory for an application to read and understand XML document,  many  developers 

recommend writing DTDs for XML applications. Using DTD we can specify various  elements  types, 

attributes and their relationship with in another. Basically DTD is used to specify set of rules for structuring 

data in any XML file. 

 

 Using DTD in XML document: 
To validate XML document against DTD, we must tell validator where to find DTD so that it knows 

rules to be verified during validation. A Document Type Declaration is used to make such link  and  

DOCTYPE keyword is used for this purpose. There are three ways to make this link: Internal DTD, External 

DTD and Combined internal and external. 

1. Internal DTD: 

When we embed DTD in XML document, DTD information is  included  within  XML  document 

itself. Specifically, DTD information is placed between square brackets in DOCTYPE  declaration.  The 

general syntax of internal DTD is 

Syn: <!DOCTYPE root-element [ 

element-declarations 

]> 
Where root-element is the name of root element and element-declarations is where we declare the 

elements. Since every XML document must have one and only one root element, this is also structure  

definition of the entire document. Here, DOCTYPE must be in uppercase, document type declaration must 

appear before first element and name following word DOCTYPE i.e. root-element must match with name of 

root element. 

Advantage of internal DTD is that we have to handle only single xml document instead of many which is  

useful for debugging and editing. It is a good idea to use with smaller sized documents. Problem of internal 

DTD is that it makes documents difficult to read for big sized document. 
Ex: <?xml version="1.0" ?> 

<!DOCTYPE bookstore [ 

<!ELEMENT bookstore (book*)> 

<!ELEMENT book (title,author,price)> 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT author (#PCDATA)> 

<!ELEMENT publisher (#PCDATA)> 

<!ELEMENT price (#PCDATA)> 

]> 

<bookstore> 

<book> 

<title>WT</title> 
 

 



P a g e | 5 
 

<author>Uttam Roy</author> 

<publisher>Oxford</publisher> 

<price>500</price> 

</book> 

<book> 

<title>AJ</title> 

<author>Schildt</author> 

<publisher>TMH</publisher> 

<price>200</price> 

</book> 

</bookstore> 

2. External DTD: 

Another way of connection DTD to XML document is to reference it with in XML document i.e.  

create separate document, put DTD information there and point to it from XML document.  The  general  

syntax for external DTD is. 

Syn: <!DOCTYPE root-element SYSTEM | PUBLIC "uri"> 
Where uri is the Uniform Resource Identifier of the .dtd file. This declaration states  that we are going to  

define structure of root-element of XML document and its definition can be found from uri specified like 

book.dtd. both xml and dtd files should be kept in same directory. 

Ex: 

book.xml book.dtd 

<?xml version="1.0" ?> <!ELEMENT bookstore (book*)> 

<!DOCTYPE book SYSTEM "book.dtd"> <!ELEMENT book (title,author,price)> 

<bookstore> <!ELEMENT title (#PCDATA)> 

<book> <!ELEMENT author (#PCDATA)> 

<title>WT</title> <!ELEMENT publisher (#PCDATA)> 

<author>Uttam Roy</author> <!ELEMENT price (#PCDATA)> 

<publisher>Oxford</publisher>  

<price>500</price>  

</book>  

<book>  

<title>AJ</title>  

<author>Schildt</author>  

<publisher>TMH</publisher>  

<price>200</price>  

</book>  

</bookstore>  

Location of DTD need not always be local file, it can be any valid URL. Following declaration for XHTML 

uses PUBLIC DTD: 

Syn: <!DOCTYPE HTML PUBLIC ‘-//W3C//DTD HTML 4.0 Transitional//EN’> 

Disadvantage of using separate DTD is we have to deal with two documents. 

3. Combining Internal and External DTD: 
External DTD are useful for common rules for set of XML documents, whereas internal DTDs are beneficial 

for defining customized rules for specific document. XML allows  to combine  both internal  and  external 

DTD for complete collection of rules for given document. The general form of such DTD is: 

Syn: <!DOCTYPE root-element SYSTEM |  PUBLIC "uri" [  DTD declarations… ] > 

Ex: <?xml version="1.0" ?> 

<!DOCTYPE book SYSTEM "book.dtd" 

[ <!ELEMENT excl ‘&#21;’> 

]> 
<msg>Hello, World&excl; </msg> 

 

 



 
 DTD validation: 

P a g e | 6 

We'll use Java based DTD validator to validate the bookstore.xml against the books.dtd 

DTDValidator.java 
import java.io.*; 

import javax.xml.parsers.*; 

import org.w3c.dom.*; 

public class DTDValidator 

{ 

public static void main(String[] args) { 

try { 

DocumentBuilderFactory f = DocumentBuilderFactory.newInstance(); 

f.setValidating(true); // Default is false 

Document d = f.newDocumentBuilder().parse(arg[0]); 

} 

catch (Exception e) { System.out.println(e.toString()); } 

} 
 

 Element Type Declaration: 
Elements are primary building blocks in XML document. Element type declaration set the rules for 

type and number of elements that may appear in XML document, what order they may appear in. 

Syn: <!ELEMENT element-name type> 

Or 

<!ELEMENT element-name (content)> 
Here, element-name is name of element to be defined. The content could include specific  rule,  data  or  

another element(s). The keyword ELEMENT must be in upper case, element names are case sensitive, all 

elements used in XML must be declared and same name cannot be used in multiple declarations. 

In DTD, elements are classified depending upon their content as follows: 

 Standalone/Empty elements: these elements cannot have any content and may have attributes. They 

can be declared using type keyword EMPTY as follows: 

Syn: <!ELEMENT element-name EMPTY> Ex: <!ELEMENT br EMPTY> 

 Unrestricted elements: element with content can be created using content type as ANY. Keyword 

ANY indicates that element-name can be anything including text and other elements in any order and 

any number of times. 

Syn: <!ELEMENT element-name ANY> Ex: <!ELEMENT msg ANY> 

 Simple elements: simple element cannot contain other elements, but contains only text. 

Syn: <!ELEMENT element-name (#PCDATA)> Ex: <!ELEMENT author (#PCDATA)> 

This interprets that element element-name can have only text content. The type of text id PCDATA 

means Parsed Character DATA and the text will be parsed by parser and will  examined for  entities 

and markups and expanded as and when necessary. Sometimes we can use CDATA means Character 

DATA in place of PCDATA. 

 Compound elements: compound elements ca contains other elements known as child elements. 

Syn: <!ELEMENT element-name  (child-elements-names)> 

Ex: <!ELEMENT book (title, author, price)> 

Occurrence Indicator: sometimes it is necessary to specify how many times element  may  occur  in  

document which is done by Occurrence Indicator. When no occurrence indicator is specified, child element 

must occur exactly once in XML document 

Operator Syntax Description 

None a Exactly one occurrence of a 

* (Astrisck) a* Zero or more occurrences of a i.e. any number of times 

+ (Plus) a+ One or more occurrences of a i.e. at least once 

 

 



P a g e | 7 
 

? (Question mark) a? Zero or one occurrences of a i.e. at most once 

Declaring multiple children: elements with multiple children are declared with names of the child elements 

inside parenthesis. The child elements must also be declared. 

Operator Syntax Description 

, (Sequence) a , b a followed by b 

| (Choice) a | b a or b 

() (Singleton) (expression) Expression is treated as a unit 

 

 Attribute Declaration: 
Attributes are used to associate name, value pairs with elements. They are useful when we want to provide 

some additional information about elements content. The declaration  starts  with  ATTLIST  followed  by 

name of the element the attributes are associated with and declaration of individual declarations: 

Syn: <!ATTLIST element-name attribute-name attribute-type default-vale> 

Ex: <!ATTLIST employee geneder CDATA ‘male’/> 

Here, ATTLIST must be in upper case. The default-value can be any of the following: 

 Default: in this case, attribute is optional and developer may or may not provide this attribute. When 

attribute is declared with default value, the value of attribute is whatever value appears as attributes 

content in instance document. 

Ex: <!ATTLIST line width CDATA ‘100’/> 

 #REQUIRED: attribute must be specified with value every time enclosing element is listed 

Ex: <!ATTLIST line width CDATA #RQUIRED /> 

 #FIXED: attribute is optional and is used to ensure that the attributes are set to particular values. 

Ex: <!ATTLIST line width CDATA #FIXED ‘50’/> 

 #IMPLIED: similar to that of default attribute except that no default value is provided by XML 

Ex: <!ATTLIST line width CDATA ‘#IMPLIED’ /> 

Attribute types: 

The attribute-type can be one among string or CDATA, tokenized and enumerated types. 

 String type: may take any literal string as value and can be declared using keyword CDATA. An 

attribute of CDATA type can contain any character if it conforms to well formedness  constraints.  

Some it can contains escape characters like <, > etc. 

 Tokenized type: following tokenized types are available 

o ID: it is globally unique identifier of attribute, this means value of  ID  attribute  must  not 
appear more than once throughout the XML document and resembles primary key concept of 
data base. 

<!ATTLIST question no ID #REQUIRED> 

o IDREF: similar to that of foreign key concept in databases and is  used  to  establish 
connections between elements. IDREF value of the attribute must refer to ID value declared 

<!ATTLIST answer qno IDREF #REQUIRED> 

o IDREFS: it allows a list of ID values separated by white spaces 
<!ATTLIST answer qno IDREFS #REQUIRED> 

o NMTOKEN: it restricts attributes value to one that is valid XML name means allows 
punctuation marks and white spaces. 

<!ATTLIST car serial NMTOKEN #REQUIRED> 

o NMTOKENS: can contains same characters and white spaces as NMTOKEN. White space 
includes one or more characters, carriage returns, line feeds, tabs 

<!ATTLIST car serial NMTOKENS #REQUIRED> 

o ENTITY: refers to external non parsed entities 
<!ATTLIST car serial ENTITY #REQUIRED> 

o ENTITIES: values of ENTITIES attribute may contain multiple  entity names  separated by  
one or more white spaces 

<!ATTLIST car serial ENTITIES #REQUIRED> 
 

 



P a g e | 8 
 

 Enumerated type: enumerated attribute values are used when we want attribute value to be one of 

fixed set of values. There are two kinds of enumerated types: 

o Enumeration: attributes are defined by a list of acceptable values from  which  document 
author must choose a value. The values are explicitly specified in declaration, separated by 
pipe(|) 

<!ATTLIST employee gender (male|female) #REQUIRED> 

o Notation: it allows to use value that has been declared a NOTATION in DTD.  Notation is  
used to specify format of non-XML data and common used is to describe MIME types like 
image/gif, image/jpeg etc. 

<!NOTATION jpg SYSTEM ‘image/gif’> 

<!ENTITY logo SYSTEM ‘logo.jpg’ NDATA jpg> 

<!ATTLIST photo format NOTATION (jpg) #IMPLIED> 

 

 Entity Declaration: 
Entities are variables that represent other values. If a text contains entities, the value of entity is 

substituted by its actual value whenever the text is parsed. Entity must be defined in DTD declaration to use 

custom entites in XML document. Built-in entities and character entities do not  require  any declaration.  

There are two types of entity declarations: General entity and Paramter entity.  Each type can be again Parsed 

or Unparsed. 

 General and Parameter entities: General entities are used with in the document content. Parameter 

entities are parsed entites used with in DTD. These two types of entites use different forms of 

references and are recognized in different contexts. They occupy different namespaces 

 Parsed and Unparsed entities: Parsed entity is an entity whose content is  parsed  and checked for 

well formedness constraint during parsing procedure. Unparsed entity  is  resource  whose  contents 

may or may not be text and if text may not be XML. It means there are no constrainst on conetents of 

unparsed entities. Each unparsed entity has associated notation, identified by name. 

 General Entity Declaration: 

There are three kinds of general entitity declarations: 

 Internal parsed: an internal entity declaration has following form 

Syn: <!ENTITY entity-name “entity-value”> 

Ex: <!ENTITY UKR “Uttam Kumar Roy”> 

The entity UKR can be referred in XML document as follows: 

<author>&UKR;</author> 

This will be interprested as : <author>Uttam Kumar Roy</author> 

 External parsed: external entities allow an XML document to refer to external resource.Parse 

external entites refer to data that an XML parser has to parse and used for long replacement text 

which is kept in another file. There are two type of external parsed entities: Public and Private. 

Public external enties are identified by PUBLIC keyword and intended for general use. Private 

external entites are identified by SYSTEM keyword and are intended for use by single author or 

group of authors. 

Syn: <!ENTITY entity-name SYSTRM | PUBLIC “URI”> 

Ex: <!ENTITY author SYSTEM “author.xml”> 

 External unparsed: refer to data that an XML processor does not have to parse.  For  example, 

there are numerious ASCII text files, JPRG photographs etc. None of theseare well formed XML. 

Mechanism that XML suggests for embedding these files is enternal unparsed entity. They can be 

either private or public. 

Syn: <!ENTITY logo SYSTEM “logo.jpg” NDATA jpeg> 

 Parameter Entity Declaration: 

DTD supports another kind of entity called parameter entity. It is used within DTD which allows to 

assign collection of elements, attributes and attribute values to name and refer them using name instead of 

explicitly listimg them every time they are used. 
 

 



P a g e | 9 
 

 Internal parsed entity: it has following form 

Syn: <!ENTITY % entity-name entity-definition> 

Ex: <!ENTITY % name “firstname, middlename, lastname”> 

This parameter entity describes portion of content model that can be referenced with in  

elements ind DTD. They can be referenced using entity name between precent sign(%) and 

semicolor(;). 

Syn:     %Entity-name; Ex: %name; 

 External parsed entity: These are used to link external DTDs. It may be private or public and is 

identified by keywords SYSTEM and PUBLIC. Private entites are intended for use by single  

author where as public entities can be used by anyone. 

Syn: <!ENTITY % entity-name SYSTEM | PUBLIC “URI”> 

 

2. XML Schema: 
XML Schema Definition commonly known as XSD, is a way to describe  precisely  the  XML 

language. XSD check the validity of structure and vocabulary of an XML document against the grammatical 

rules of the appropriate XML language.An XML document can be defined as: 

 Well-formed: If the XML document adheres to all the general XML rules such as tags must be  

properly nested, opening and closing tags must be balanced and empty tags must  end with '/>',  then it 

is called as well-formed.

 Valid: An XML document said to be valid when it is not only well-formed, but it also conforms to 

available XSD that specifies which tags it uses, what attributes those tags can contain and which tags 

can occur inside other tags, among other properties.

Limitaions of Document Type Declaration (DTD) 

 There is no bult-in data type in DTDs

 No new data types can be created in DTDs

 The use of cardinatlity in DTDs is limited

 Namespaces are not supported

 DTDs provide very limited support for modularity and reuse

 We can not put any restrictions on text content

 Defaults for elements can not be specified

 We have very little control over mixed content

 DTDs are written in strange format and are difficult to validate

Strengths of XML Schema(XSD) 

 XML schema provided much grater specification than DTDs

 They support large number of built-in data types

 They support namespaces

 They are extensible to future additions

 They support uniqueness and referencial integrity constraints in much better way

 It is easier to define data restrictions

 

 XSD Structure: 
An XML XSD is kept in a separate document and then the document having extension .xsd and is be 

linked to the XML document to use it. Schema is the root element of XSD and it is always required. 

Syn: <?xml version="1.0"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

… 

</xs:schema> 

Above fragement specifies that elements and datatypes used in the schema are defined in 

"http://www.w3.org/2001/XMLSchema" namespace and these elements/data types should  be prefixed  with  

xs. Similarly, XSD can be linked to xml file with following syntax: 
 

 

 

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema


P a g e | 10 
 

Syn: <roo-tag xmlns:xsi=” http://www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”uri”> 

Above fragement specifies default namespace declaration i.e. "http://www.w3.org/2001/XMLSchema- 

instance". This namespace is used by schema validator check that all the  elements  are  part  of  this 

namespace. It is optional. Use schemaLocation attribute to specify the location of the xsd file. 

Ex: book.xml 

<?xml version="1.0" ?> 

<bookstore xsi:schemaLocation=”book.xsd” xmlns:xsi=” http://www.w3.org/2001/XMLSchema-instance” 

> 

<book> 

<title>WT</title> 

<author>Uttam Roy</author> 

<publisher>Oxford</publisher> 

<price>500</price> 

</book> 

<book> 

<title>AJ</title> 

<author>Schildt</author> 

<publisher>TMH</publisher> 

<price>200</price> 

</book> 

</bookstore> 

book.xsd 

<?xml version="1.0"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name=”bookstore”> 

<xs:complexType> 

<xs:sequence> 

<xs:element name=”book”> 

<xs:complexType> 

<xs:sequence> 

<xs:element name=”title” type=”xs:string”/> 

<xs:element name=”author” type=”xs:string”/> 

<xs:element name=”publisher” type=”xs:string”/> 

<xs:element name=”price” type=”xs:integer”/> 

</xs:sequence> 

</xs:complexType> 

</xs:element> 

</xs:sequence> 

</xs:complexType> 

</xs:element> 

 

 XSD Validation: 
We'll use Java based XSD validator to validate the bookstore.xml against the books.xsd. 

XSDValidator.java 

import java.io.*; 

import javax.xml.*; 

import javax.xml.transform.dom.*; 

import  javax.xml.parsers.*; 

import javax.xml.validation.*; 

import org.w3c.dom.*; 
 

 

 

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema


P a g e | 11 
 

public class XSDValidator { 

public static void main(String[] args) { 

try { 

SchemaFactory factory = 

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI); 

Schema schema = factory.newSchema(new File(args[1])); 

Validator validator = schema.newValidator(); 

DocumentBuilder parser=DocumentBuilderFactory.newInstance().newDocumentBuilder(); 

Document document=parser.parse(new File(args[0])); 

validator.validate(new DOMSource(document)); 

} 

catch (Exception e) 

{ System.out.println("Exception: "+e.getMessage()); } 

} 
 

 Element declaration: 
Elements are primary building blocks in XML document. Element type  declaration  can  be  done 

using <xs:element> tag with following syntax. 

Syn: <xs:element  name=”element-name”  type=”element-type”> 

Ex: <xs:element name=”title” type=”xs:string”> 

Each element declaration within the XSD has mandatory attribute name. the value of this name 

attribute is the element name attribute is the element name that will appear in the XML document. Element 

definition may also have optional type attribute, which provides description of what can be containted within 

the element when it appears in XML document. Every XML document must have root element. This root 

element must be declared first in schema for conforming XML documents. 

Ex: <!xml version=”1.0”?> 

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”> 

<xs:element name=”bookstore”> 

</xs:element> 

</xsd:schema> 

 Declarting simple elements: 

Simple type elements can contain only text and/or data. They can not have child elements or 

attributes, and can not be empty. Simple elements are defined as follows: 

Syn: <xs:element name=”element-name” type=”element-type”> 
Ex: <xs:element name=”title” type=”xs:string”/> 

The value of type attributes specifies an elements content type and can be any simple type. This 

attribute can be any complex type. 

 Default Value: Simple Element can have default value that specifies the default content to be used 

when not content is specified. When an element is declared with default value, the value  of  the  

element is whatever value appears as elements content in instance document. Following example 

illustrates this: 

<xs:element name="gender" type="xs:boolean" default="true" /> 

 Fixed Value: Simple Element can also have optional fixed value.  Fixed attribute is  used to  ensure 

that elements content is always set to particular value. Consider the following syntax: 

<xs:element name="branch" type="xs:string" fixed="IT" /> 

 Occurance indicators: an element have two optional attributes : minOccurs  and maxOccurs.  They  

are used to specify the number of times an element can occur in XML document. 

o minOccurs: this attribute specifies minimum number of times an element can occur. The 
following is example of usage of this attribute: 

<xs:element name=”option” type=”xs:string” minOccurs=”0”/> 
 

 

 

http://www.w3.org/2001/XMLSchema


P a g e | 12 

 
o maxOccurs: this attribute specifies maximum number of times an element can occur. The 

declaration of element will be as follows: 

<xs:element name=”option” type=”xs:string” maxOccurs=”10”/> 

Schema DTD Meaning 

minOccurs=’0’, maxOccurs=’unbounded’ * Zero or more 

minOccurs=’1’, maxOccurs=’unbounded’ + One or more 

Minoccurs=’0’ ? Optional 

None None Exactly one 

 Declarting complex elements: 
Complex types can be named or  can be anonymous. They are associated with  complex  elements  in 

the same manner, typically using a type definition and an element declaration. By default, complex type 

elements have complex content i.e. they have child elements. Complex type elements can be  limited  to  

having simple content i.e. they contain only text. General form of element declaration is: 

Syn: <xs:complexType name=”complex-type-name”><xs:sequence> 
</xs:sequence></xs:complexType> 

Ex: <xs:complexType name=”sName”><xs:sequence> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”lase” type=”xs:string”/> 

</xs:sequence></xs:complexType> 

 

 Atribute declaration: 
Attrbibutes are used to describe properties of an element. Attributes themselves are always declared 

as simple types as follows: 

Syn: <xs:attribute name”attribute-name” type=”attribute-type”> 

Ex: <xs:attribute name=”id” type=”xs:string’/> 

Simple types can not have attributs. Element that have attributes are complex types. So, attributes 

declaration always occurs as part of complex type declaration, immediately after its content model. 

Ex: <xs:complexType name=”sName”><xs:sequence> 
<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”lase” type=”xs:string”/> 

</xs:sequence> 

<xs:attribute name=”id” type=”xs:string”/> 

</xs:complexType> 

A part from this simple definition, there can be additional specifications for attributes: 

 Attribute element properties:

o use: possible values are optional, required and prohibited. 
<xs:attribute name=”id” type=”xs:string” use=”required”/> 

o default: this specifies the value to be used if attribute is not specified 
<xs:attribute name=”gender” type=”xs:boolean” default=”false”/> 

o fixed: it specifies that attribute, if it appears must always have fixed value specified. If the 
attribute does not appear, the schema  processor  will provide attribute with value specified  
here. 

<xs:attribute name=”unit” type=”xs:boolean” default=”rpm”/> 

 Order Indicators

o All: Child elements can occur in any order. 
<xs:all> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”last” type=”xs:string”/> 
 

 



P a g e | 13 
 

</xs:all> 

o Choice: Only one of the child element can occur. 
<xs:choice> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”last” type=”xs:string”/> 

</xs:choice> 

o Sequence: Child element can occur only in specified order. 
<xs:sequence> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”last” type=”xs:string”/> 

</xs:sequence> 

 Occurence Indicators

o maxOccurs - Child element can occur only maxOccurs number of times. 

o minOccurs - Child element must occur minOccurs number of times. 
 Group Indicators

o Group: a set of related elements can be created using this indicator. the general form for 
creating an element group is as follows: 

Syn: <xs:group name=”group-name”> … </ xs:group> 

Ex: <xs:group name=”personInfo”> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”last” type=”xs:string”/> 

</ xs:group> 

o attributeGroup: XML Schema provides this element, which is used to group  a  set  of 
attributes declarations so that they can be incorporated into complex types definitions with 

syntax: 

Syn: <xs:attributeGroup name=”group-name”> … </ xs:attributeGroup> 

Ex: <xs: attributeGroup name=”personInfo”> 

<xs:element name=”first” type=”xs:string”/> 

<xs:element name=”middle” type=”xs:string”/> 

<xs:element name=”last” type=”xs:string”/> 

</ xs: attributeGroup> 

 

 Annotations declaration: 
XML schema provides three annotation elements for documentation purposes in XML schema  

instance. They provide a way to write realistic ans structured comments for the benefit of applications. An 

annotation is represented by <annotation> element which typically appears at  the  beginning  of  most 

schemas. However, it can appear inside any complex element definition. It can contain only two elements 

<appinfo> and <documentation> any number of times. Following is an example: 

<xs:annotation> 

<xs:documentation> <author>Uttam Roy</author></xs:documentation> 

<xs:appinfo><version>2.1</version></xs:appinfo> 

</xs.annotation> 

 

 XML Scheme data types: 
An element is limited by its type. Depending upon content model,  elements  are  categorized  as  

Simple or Complex type. A simple type can further be divided into three types: Atomic, List  and  Union.  

XML schema 1.0 specification provides about 46 built in data types.  All built-in data types  except anyType  

are considered as simple types. Some of the built-in data types are as follows: 
 

 



P a g e | 14 

 

 XSD String Data Types: 

String data types are used to represent characters in the XML documents. 

 <xs:string>: The <xs:string> data type can take characters, line feeds, carriage returns, and tab 

characters. XML processor do not replace line feeds, carriage returns, and tab characters  in  the  

content with space and keep them intact. For example, multiple spaces or tabs are preserved during 

display.

Syn: <xs:element name="elment-name"  type="xs:string"/> 

Ex: < xs:element name="sname" type="xs:string"/> 

 <xs:token>: The <xs:token> data type is derived from <string>  data type and can take  characters,  

line feeds, carriage returns, and tab characters. XML processor removes line feeds,  carriage returns, 

and tab characters in the content and keep them intact. For example, multiple spaces or tabs  are 

removed during display.

Syn: <xs:element name="element-name" type="xs:token"/> 

Following is the list of commonly used data types which are derived from <string> data type. 

 ID: Represents the ID attribute in XML and is used in schema attributes.

 IDREF: Represents the IDREF attribute in XML and is used in schema attributes.

 Language:Represents a valid language id

 Name: Represents a valid XML name

 NMTOKEN: Represents a NMTOKEN attribute in XML and is used in schema attributes.

 normalizedString: Represents a string that does not contain line feeds, carriage returns, or tabs.

 String: Represents a string that can contain line feeds, carriage returns, or tabs.

 Token: Represents a string that does not contain line feeds, carriage returns, tabs, leading or trailing 

spaces, or multiple spaces

 XSD Date & Time Data Types: 

Date and Time data types are used to represent date and time in the XML documents. 

 <xs:date> data type: The <xs:date> data type is used to represent date in YYYY-MM-DD format. 

Each component is required. YYYY- represents year, MM- represents month, DD- represents day 

Syn: <xs:element name="birthdate" type="xs:date"/>

Ex: <birthdate>1980-03-23</birthdate> 

 <xs:time> data type: The <xs:time> data type is used to represent time in hh:mm:ss format. Each 

component is required. hh- represents hours, mm- represents minutes, ss- represents  seconds 

Syn: <xs:element name="startTime" type="xs:time"/>

Ex: <startTime>10:20:15</startTime> 

 <xs:datetime> data type: The <xs:datetime> data type is used to represent date and time in YYYY- 

MM-DDThh:mm:ss format. Each component is required. YYYY- represents year, MM- represents 

month, DD- represents day, T- represents start of time section, hh- represents hours, mm- represents 

minutes, ss- represents seconds

Syn: <xs:element name="startTime"  type="xs:datetime"/> 

Ex: <startTime>1980-03-23T10:20:15</startTime> 

 <xs:duration> data type: The <xs:duration> data type is used to represent time interval in 

PnYnMnDTnHnMnS format. Each component is optional except P.  P-  represents  year,  nY- 

represents month, nM- represents day, nD- represents day, T- represents start of time section, nH- 

represents hours, nM- represents minutes, nS- represents seconds

Syn: <xs:element name="period" type="xs:duration"/> 

Element usage in xml to represent period of 6 years, 3 months, 10 days and 15 hours. 

Ex: <period>P6Y3M10DT15H</period> 

Following is the list of commonly used date data types . 

 Date: Represents a date value

 dateTime: Represents a date and time value

 duration: Represents a time interval

 gDay: Represents a part of a date as the day (DD)
 
 



P a g e | 15 
 

 gMonth: Represents a part of a date as the month (MM)

 gMonthDay: Represents a part of a date as the month and day (MM-DD)

 gYear: Represents a part of a date as the year (YYYY)

 gYearMonth: Represents a part of a date as the year and month (YYYY-MM)

 time: Represents a time value
 

 XSD Numeric Data Types: 

Numeric data types are used to represent numbers in the XML documents. 

 <xs:decimal> data type: The <xs:decimal> data type is used to represent numeric values. It support 

decimal numbers upto 18 digits.

Syn: <xs:element name="score" type="xs:decimal"/> 

Ex: <score>9.12</score> 

 <xs:integer> data type: The <xs:integer> data type is used to represent integer values.

Syn: <xs:element name="score" type="xs:integer"/> 

Ex: <score>9</score> 

Following is the list of commonly used numeric data types . 

 Byte: A signed 8 bit integer

 Decimal: A decimal value

 Int: A signed 32 bit integer

 Integer: An integer value

 Long: A signed 64 bit integer

 negativeInteger: An integer having only negative values (..,-2,-1)

 nonNegativeInteger:  An integer  having only non-negative  values (0,1,2,..)

 nonPositiveInteger:  An integer having only non-positive  values (..,-2,-1,0)

 positiveInteger: An integer having only positive values (1,2,..)

 short: A signed 16 bit integer

 unsignedLong: An unsigned 64 bit integer

 unsignedInt: An unsigned 32 bit integer

 unsignedShort: An unsigned 16 bit integer

 unsignedByte: An unsigned 8 bit integer

 

 XSD Miscalleneous Data Types 

Other Important Miscellaneous data types used are boolean, binary and anyURI. 

 <xs:boolean> data type: The <xs:boolean> data type is used to represent true, false, 1 (for true) or 0 

(for false) value.

Syn: <xs:element name="pass" type="xs:boolean"/> 

Ex: <pass>false</pass> 

 Binary data types: The Binary data types are used to represent binary values. Two binary types are 

common in use. base64Binary- represents base64 encoded binary data, hexBinary - represents 

hexadecimal encoded binary data

Syn: <xs:element name="blob" type="xs:hexBinary"/> 

Ex: <blob>9FEEF</blob> 

 <xs:anyURI> data type: The <xs:anyURI> data type is used to represent URI.

Syn: <xs:attribute name="resource" type="xs:anyURI"/> 

Ex: <image resource="http://www.tutorialspoint.com/images/smiley.jpg" /> 

 

eXtensible Stylesheet Language Transformation(XSLT): 
XML documents contain self-describing and structured data. The set of tags and  their  structure 

varies widely in different applications. Web browsers can not display such non-HTML files as they have no 

prior knowledge about the meaning of set of tags used in different XML documents. Users may also want to 
 

 

http://www.tutorialspoint.com/images/smiley.jpg


P a g e | 16 
 

generate new XML documents from one or more existing XML documents for processing or sharing of data 

between different applications. One possible solution is to generate separate XML document such that the 

former contains only insensitive data. XSLT comes into play in this scenario. 

XSLT, Extensible Stylesheet Language Transformations provides the ability  to  transform  XML 

data from one format to another automatically. An XSLT  stylesheet  is  used  to  define the transformation  

rules to be applied on the target XML document. XSLT stylesheet is written in  XML  format.  XSLT  

Processor takes the XSLT stylesheet and apply the transformation rules  on the target  XML document  and 

then it generates a formatted document in form of  XML, HTML or text format. This formatted document 

then is utilized by XSLT formatter to generate the actual output which is to be displayed to the end user. 

 

 
Following are the main parts of XSL. 

 XSLT - used to transform XML document into various other types of document.

 XPath - used to navigate XML document.

 XSL-FO - used to format XML document.

In general following tasks can be performed using XSLT: Constant text generation, Reformatting of 

information, sensitive information suppression, adding new information, copying information and Sorting 

document with respect to a criteria. 

Advantages 

 Independent of programming. Transformations are written in a seperate xsl file which is again an 

XML document.

 Output can be altered by simply modifing the transformations in xsl file. No need to change in any 

code. So Web designers can edit stylesheet and can see the change in output quickly.

 
1. Stylesheet strcture: 

XSLT files are themselves XML documents and hence must  follow  the  well-formedness 

constraints. The W3C defined the exact syntax of an XSLT 2.0 document by XML schema. XSLT file starts 

with XML declaration. Every XSLT file must have either <stylesheet> or <transform> as root element. 

Following are simple structure of XSLT document: 

<?xml version=”1.0”?> 
<xsl:stylesheet version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSLT/Transform”> 

… 

</ xsl:stylesheet> 

Or 

<?xml version=”1.0”?> 

<xsl:transform version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSLT/Transform”> 

… 

</ xsl: transform > 

These elements must have the attribute version and namespace attribute xmlns. Version attribute 

indicate version of XSLT being used. Namespace attribute distinguishes  XSLT  elements  from  other 

elements. There are different ways to apply XSLT document to XML document.  One  way to add link to  

XML document which points to actual XSLT files and lets the browsers do transformation with following 

declaration: 

<?xml version =”1.0”?> 
 

 

http://www.w3.org/1999/XSLT/Transform
http://www.w3.org/1999/XSLT/Transform


P a g e | 17 
 

<?xml-stylesheet type=”text/xsl” href=”URI”> 

<root> … </root> 

students.xml  students.xsl 

<?xml version=”1.0”?>  <?xml version=”1.0”?> 

<?xml-stylesheet type=”text/xsl” <xsl:stylesheet version=”2.0” 

href=”students.xsl”>  xmlns:xsl=”http://www.w3.org/1999/XSLT/Transform”> 

<class>  … 

…  </ xsl:stylesheet> 

</class>   

 

2. XSLT Elements: 
An XSLT file contains elements, which instruct processor how an XML document is to be 

transformed. It may contain elements that are not defined by XSLT. In such cases, XSLT processor does not 

process these non-XSLT elements and add them to the ouput in the same order they occurred in the source 

XSLT document. This means that  the transformed XML document  may use original mark-ups  as  well  as  

new mark-ups. 

Element Description 

stylesheet Defines the root element of a style sheet 

transform Defines the root element of a style sheet 

template Rules to apply when a specified node is matched 

apply-templates Applies a template rule to the current element or to the current element's child nodes 

call-template Calls a named template 

element Creates an element node in the output document 

variable Declares a local or global variable 

param Declares a local or global parameter 

value-of Extracts the value of a selected node 

attribute Adds an attribute 

attribute-set Defines a named set of attributes 

if Contains a template that will be applied only if a specified condition is true 

choose Used in conjunction with <when> and <otherwise> to express multiple conditional tests 

when Specifies an action for the <choose> element 

for-each Loops through each node in a specified node set 

import 
Imports the contents of one style sheet into another. Note: An imported style sheet has 

lower precedence than the importing style sheet 

include 
Includes the contents of one style sheet into another. Note: An included style sheet has 

the same precedence as the including style sheet 

sort Sorts the output 

processing- 

instruction 
Writes a processing instruction to the output 

comment Creates a comment node in the result tree 

copy Creates a copy of the current node (without child nodes and attributes) 

copy-of Creates a copy of the current node (with child nodes and attributes) 

 

3. XSLT templates: 
An XSLT document is all about template rules. A template specifies rule and instruction, which is 

executed when rule matches. The rule is specified by XSLT <template> element.  It  has  attribute match,  

which specifies pattern. The value of match attribute is subset of expression. 
 

 

http://www.w3.org/1999/XSLT/Transform


P a g e | 18 
 

Syn: <xsl:template match=”expression”> 

… 

</xsl:template> 

Ex: <xsl:template match=”/”> 

<h1>Hello! World.</h1> 

</xsl:template> 

XSLT document contain single template rule. It has match attribute with expressin  “/”,  which  

means the document root of any XML document. Ths instruction with in this template specifies the string 

Hello! World has to be added to the output and the resulting document obtained is as follows: 

<html> <body><h1>Hello! World.</h1></body> </html> 

Applying templates: 

In general, if a node matches with template pattern, the templates action part is processed. It is also 

possible to instruct XSLT processor to process other template rules if any. This is done using <apply- 

templates> element with following syntax: 

<xsl:template match=”/”> 
<xsl:apply-templates/> 

</xsl:template> 

This example states that whenever document root is encountered, XSLT processor has  to  process  all 

templates that match with document roots children roots. The XSLT engine in turn, compares each child 

element of document root aginst templates in style sheet and if match is  found,  it  processes  the 

corresponding template. 

Processing Sequence and default templates: 

When XSLT processor is supplied XML document for transformation using XSLT  document,  it  

first creates document tree. Processing always starts from document root of this tree.  So, XSLT processor 

looks for template for it. If no template is found for document root, XSLT processor provides default  

templates. This default template for document root looks like this: 

<xsl:template match=”/”> 

<xsl:apply-templates/> 

</xsl:template> 

The behaviour of default template for any element node looks as follows: 

<xsl:template match=”*”> 

<xsl:apply-templates/> 

</xsl:template> 

Default template for text nodes as follows: 

<xsl:template match=”text()”> 

<xsl:apply-templates/> 

</xsl:template> 

Default templates and their behavior: 

 Root: process template for its children 

 Element:  process templates for its children 

 Attribute:  output  attribute name and value 

 Text: output text value 

 Processing instruction: do nothing 

 Comment: do nothing 

Named templates: 

XSLT named templates resemble the functions in any procedural programming language. The 
<template> element has name attribute, which can be used to give name to template. Once template is 

created this way, it can be called by using <call-template> element and specifying its name. 

<xsl:template match=”/”> 

<xsl:call-template name=”header”/> 

</xsl:template> 
 

 



P a g e | 19 
 

<xsl:template name=”header”> 

<title>XSLT</title> 

</xsl:template> 

 

4. Selecting values: 
The value of a node can also be added  using <value-of>  element.  Value of  node depends  on type 

of the node. For example, the value of text node is the text itself, whereas the value of element node is 

concatenation of values of all text descendents. If multiple nodes are selected by select attribute, value is 

concatenation of values of those selected attributes. Consider simple XML document: 

<book> 

<title>Web Technologies</title> 

</book> 

One can now extract the value of title element using <value-of> elemement as follows: 

<xsl:template match=”/”> 

Title: <xsl:value-of select=”book/title”/> 

</xsl:template> 

This XSLT file, on applying previous XML document produces following result: 

Title: Web Technologies 

Values of different node types: 

 Text: text of node 

 Element: concatenation of values of all text descendants 

 Attribute: attribute value without quotation marks 

 Namespace: the URI of the namespace 

 Comment: anything between <!--and --> 

 Processing instruction: anything between <? and ?> 

XSLT has another element <copy-of>, which returnas all selected elements including nested 

elements and text. Consider the following XSLT document. 

<xsl:template match=”/”> 

<xsl:copy-of select=”.”/> 

</xsl:template> 

When we apply this XSLT document to any XML document, it produces  the  same  XML  

document. This is because, when root element (/) is selected, <copy-of>  copies root  element  together with   

all child elements recursively. 

 

5. Varaibale and Parameters: 
Named templates resembles the functions in any procedural programming language. Like function, 

named templates may accept argument. Formal parameters are declard with in template using <param>  

element as follows: 

<xsl:template name=”add”> 
<xsl:param name=”a”/> 

<xsl:param name=”b”/> 

<xsl:value-of select=”$a+$b”/> 

</xsl:template> 

This example defines named template add, which takes two parameters a and b. The purspose  of  this  

template is to add two arguments taken and produce the result to output. Arguments can then be passed to 

template using <with-param> element during template call. 

<xsl:call-template name=”add”> 

<xsl:with-param  name=”a” select=”2”/> 

<xsl:with-param  name=”b” select=”4”/> 

</xsl:call-template> 
 

 

 



P a g e | 20 
 

This code calls template add with parameters 2 and 4. If this XSLT applied to XML document the 

output will be 6. The scope of forrmal is with in  the template  only.  XSLT  allows  to  declare anduse  

variable. Consider the following code: 

<xsl:template> 

<xsl:variable name=”a”>4</xsl:variable> 

<xsl:variable name=”b”> 6</xsl:variable> 

<xsl:value-of select=”$a+$b”/> 

</xsl:template> 

 

6. Conditional Processing: 
There are two types of branching constructs in XSLT: <if> and <choose> 

 
 Using if: 

XSLT <if> element has attribute test, which takes Boolean expression. If the effective  Boolean  

value of this expression is evaluated to true, the action under  <if> construct  is followed.  The general syntax  

of <if> construct is as follows: 

<xsl:if test=”condition”> 

… 

</xsl:if> 

The following extracts information about only that book having title as “Web Technologies”: 

<xsl:template match=”//book”> 

<xsl:if test=”@title=’Web Technologies’”> 

Author: <xsl:value-of select=”@author”/> 

Price: <xsl:value-of select=”@price”/> 

</xsl:if> 

</xsl:template> 

 
 Using choose: 

XSLT <choose> element allows us to select particular condition among set of conditions specified 

by <when> element. The general format of <choose> construct is: 

<xsl:choose> 

<xsl:when  text=”expression1”>..</xsl:when> 

<xsl:when  text=”expression2”>..</xsl:when> 

… 

<xsl:when  text=”expressionN”>..</xsl:when> 

<xsl:otherwise>…</xsl:otherwise> 

</xsl:choose> 

Consider the following XML file result.xml, containing marks of different students: 

<result> 

<student><rollno>01</rollno><marks>80</marks></student> 

<student><rollno>02</rollno><marks>70</marks></student> 

<student><rollno>03</rollno><marks>60</marks></student> 

<student><rollno>04</rollno><marks>55</marks></student> 

<student><rollno>05</rollno><marks>77</marks></student> 

</result> 

The following XSLT document displays results of the students: 

<xsl:choose> 

<xsl:when test=”marks &gt; 80 and marks &lt;= 100”>A Grade</xsl:when> 

<xsl:when test=”marks &gt;  70 and marks  &lt;=  80”>B Grade</xsl:when> 

<xsl:when test=”marks &gt; 60 and marks  &lt;=  70”>C  Grade</xsl:when> 

<xsl:when test=”marks &lt;=60”>D Grade</xsl:when> 
 

 



P a g e | 21 
 

</xsl:choose> 

6. Repetition: 
XSLT allows <for-each> construct, which can be used to process set of instructions repetedly for 

different items in sequence. The attribute select evaluates sequence of nodes. For each of telements in this 

sequence, instruction under <for-each> element are processed. Consider the following XML file result.xml, 

containing marks of different students: 

<result> 
<student><rollno>01</rollno><marks>80</marks></student> 

<student><rollno>02</rollno><marks>70</marks></student> 

<student><rollno>03</rollno><marks>60</marks></student> 

<student><rollno>04</rollno><marks>55</marks></student> 

<student><rollno>05</rollno><marks>77</marks></student> 

</result> 

The following XSLT document displays results of the students: 

<xsl:for-each select=”result”> 

Roll No: <xsl:value-of select =”rollno”/><br> 

Marks: <xsl:value-of select =”marks”/><br> 

</xsl:for-each> 

 

7. Creating nodes and Sequences: 
XSLT allows to directly create custom nodes such as element node, text nodes etc. or sequences of 

nodes and atomic values that appear in output. 

 Creating element nodes: 
An element node is created using <element> tag. The content of created element is whatever is 

generated between the starting and closing of <element> tag. If an element has attributes, they are declared 

using <attribute> tag described in the next section. 

<xsl:element name=”msg”> 

Hello world! 

</xsl:element> 

 Create attribute node: 

An attributes of an element is created using enclosed <attribute> tag. The mandatory attribute 

name specifies name of the generated attributes. The value is indicated by contnent of <attribute> element. 

<xsl:element name=”msg”> 

<xsl:attribute name=”lang”>en</xsl:attribute> 

Hello world! 

</xsl:element> 

This code segment creates the element msg with attribute lang as follows: 

<msg lang=”en”>Hellow World!</msg> 

 Create text nodes: 
Generally, XSLT processor outputs text that appears in the stylesheet. However, extra white spaces 

are not provided in such case. Secondaly, special characters such as < and  & are represented  in  text  by  

escape character sequence &lt; and &amp; respectively. For this reason, it provides <text> element to add 

literal text to result with following syntax: 

<xsl:text> Hello World &amp;</xsl:text> 

 Creating document node: 

XSLT allows to create new document node using <document> element. For example,  following  

code create temporary document node, which is stored in varaibel named “tempTree”. 

<xsl:variable name=”tempTree” as =”document-node()”> 

<xsl:document> <xsl:apply-templates/> </xsl:document> 

</xsl:variable> 

 Creating processing instructions: 
 

 



P a g e | 22 
 

Processing instruction is added in the result using <processing-instruction> element. The most 

popular use of this element is to insert the <stylesheet> element in  output HTML/XML document  with  

syntax. 

<xsl:processing-instruction name=”xml-stylesheet”> 

<xsl:text> href=”sort.xsl” type=”text/xsl”</xsl:text> 

</xsl:processing-instruction> 

7.5 Creating comments: 

Comment is added using <comment> element as follows: 

<xsl:comment>This is XSLT document</xsl:document> 

 

8. Grouping nodes: 
XSLT allows us to group related items based on common values. Consider the following XML document. 

<result> 

<student><rollno>01</rollno><marks>80</marks><dept>IT</dept></student> 

<student><rollno>02</rollno><marks>70</marks><dept>IT</dept></student> 

<student><rollno>03</rollno><marks>60</marks><dept>CSE</dept></student> 

<student><rollno>04</rollno><marks>55</marks><dept>IT</dept></student> 

<student><rollno>05</rollno><marks>77</marks><dept>CSE</dept></student> 

</result> 

The following XSLT document displays results of the students as groups by dept: 

<xsl:template match=”/result”> 

<xsl:for-each-group select=”student” group-by=”@dept”> 

<xsl:value-of select=”current-grouping-key()” /> 

<xsl:for-each select=”current-group()”> 

<xsl:value-of select=”@rollno”/> 

</xsl:for-each> 

</xsl:template> 

This enumerates group  items  based either  on common value of  grouping key or  pattern specified 

by group-by attribute. The current-group() function returns the current group item in the iteration and current- 

grouping-key() returns commn key of current group. 

 

9. Sorting nodes: 
We can sort group of similar elements using <sort> element. The attributes of the <sort> element 

describe how to perform sorting. For example, sorting can be doen alphabetically or numerically or in 

increasing or decreating order. The attribute select is used to specify sorting  key.  The  order  attribute  

specifies order and can have values accending or decending. The type of data to be sorted can be specified 

using attribute data-type. Following example sorts list of student respect to their marks. 

<table><xsl:for-each select=”/result”> 

<xsl:sort select=”marks” data-type=”number”/> 

<tr><td><xsl:value-of select=”rollno”/></td> 

<td><xsl:value-of select=”marks”/></td> 

<td><xsl:value-of select=”dept”/></td></tr> 

</xsl:for-each></table> 

 

10. Functions: 
XSLT also allows custom functions to be defined in stylesheet. A function is defined using 

<function> element. It has attribute name, which specifies the name of the function.  Once  function  is  

defined, it can be called from any expressin. The function name must have prefix. This is required to avoid 

conflict with any function from default namespace. A prefix can not be bound to reserved namespace. 

<xsl:function name=”f:fact”> 

<xsl:param name=”n”> 
 

 



P a g e | 23 
 

<xsl:value-of select=”if ($n le 1) then 1 else $n*f:fact($n-1)”/> 

</xsl:function> 

<xsl:template match=”/”> 

<xsl:value-of select=”f:fact(3)”/> 

< xsl:template> 
 

11. Copying nodes: 
The <copy> element copies the current node to the output. If the node is an element node, its 

namespace nodes are copied automatically, but attributes and children of element nodes are not copied 

automatically. Consider the simple XML document: 

<result> 

<student><rollno>01</rollno><marks>80</marks><dept>IT</dept></student> 

<student><rollno>02</rollno><marks>70</marks><dept>IT</dept></student> 

<student><rollno>03</rollno><marks>60</marks><dept>CSE</dept></student> 
<student><rollno>04</rollno><marks>55</marks><dept>IT</dept></student> 

<student><rollno>05</rollno><marks>77</marks><dept>CSE</dept></student> 

</result> 

Now consider  following XSLT document: 

<xsl:template match=”/student”> 

<xsl:copy /> 

</xsl:template> 

 

12. Numbering: 
The <number> element allows to insert and format number into the result tree. 

<xsl:template match=”/result”> 

<xsl:for-each-group select=”student” group-by=”@dept”> 

<xsl:number value=”position()”/> 

<xsl:value-of select=”current-grouping-key()” /> 

<xsl:for-each select=”current-group()”> 

<xsl:number value=”position()”/> 

<xsl:value-of select=”@rollno”/> 

</xsl:for-each> 

</xsl:template> 

 

Document Object Model (DOM): 
The Document Object Model(DOM) is an application programming interface(API) for HTML and 

XML documents. It defines the logical structure of documents and the way a document is accesses and 

manipulated. DOM is a set of platform independent and language neutral application programming 

interface(API) which describes how to access and manipulate the information stored in XML or in HTML 

documents. Main objectives of DOM are Accessing the elements of document, deleting the elements of 

documents and changing the elements of document. 

DOM models document as hierarchical structure consisting of different kinds of nodes. Each of these 

nodes represents specific portion of the document. Some kind of nodes may have children of different types. 

Some nodes cannot have anything below it in the hierarchical structure and are leaf nodes.  With  the 

Document Object Model, programmers can build documents, navigate their structure, and add, modify, or 

delete elements and content. Anything found in an HTML or XML document can be accessed, changed, 

deleted, or added using the document object model. The DOM is separated into 3 different parts/levels: 

1. Core DOM: standard model for any structured document. 

2. HTML DOM:standard model for HTML documents. 

3. XML DOM: standard model for XML documents. 

1. Core DOM: 
 

 



P a g e | 24 
 

This portion defines the basic set of interfaces and objtects for any structured document. 

2. HTML DOM: 
The HTML Document Object Model (DOM) is a programming API for HTML documents. It defines 

the logical structure of documents and the way a document is accessed and manipulated. With the Document 

Object Model, programmers can create and build documents, navigate their structure, and add, modify, or 

delete elements and content. Anything found in an HTML document can be accessed, changed, deleted, or 

added using the Document Object Model, with a few exceptions - in particular, the DOM interfaces for the 

internal subset and external subset have not yet been specified. 

 

3. XML DOM: 

According to the DOM, everything in an XML document is a Node. The DOM says: The entire 

document is a document node, Every XML element is an element  node,  The text  in the XML elements are  
text nodes, Every attribute is an attribute node, Comments are comment nodes. 

 
The root node in the XML above is named <bookstore>. All other nodes in the document are 

contained within <bookstore>. The root node <bookstore> holds four <book> nodes. The first <book> node 

holds four nodes: <title>, <author>, <year>, and <price>, which contains one text node each, "Everyday 

Italian", "Giada De Laurentiis", "2005", and "30.00". The XML DOM views an XML document as a tree- 

structure. The tree structure is called a node-tree. All nodes can be accessed through the tree. Their  contents 

can be modified or deleted, and new elements can be created. 

The node tree shows the set of nodes, and the connections between them. The tree starts at  the root 

node and branches out to the text nodes at the lowest level of the tree. The nodes in the node tree have a 

hierarchical relationship to each other. The terms parent, child, and sibling are used to describe the 

relationships. Parent nodes have children. Children on the same  level are called siblings (brothers or  sisters). 

In a node tree, the top node is called the root, Every node except the root has exactly one parent node, A 

 

 

 
 

<bookstore> 
<book category=”cooking”> 

<title lang=”en”>Everday Italian</title> 

<author>Giada De Laurentiis</author 

<year>2005</year> 

<price>30.00</price> 

</book> 

</bookstore> 

<TABLE> 
<ROWS> 

<TR> 

<TD>Shady Grove</TD> 

<TD>Aeolian</TD> 

</TR> 

<TR> 

<TD>Over the River, Charlie</TD> 

<TD>Dorian</TD> 

</TR> 

</ROWS> 

</TABLE> 



P a g e | 25 
 

node can have any number of children, A leaf is a node with no children, Siblings are nodes with the same 

parent. 

 

Using XML processors: 
Parsing XML refers to going through XML document to access data or to modify data in one or other 

way. XML Parser provides way how to access or modify data present in an XML document. Java provides 

multiple options to parse XML document. Following are various types  of parsers  which are commonly used  

to parse XML documents. 

 Dom Parser: Parses the document by loading the complete contents of the document and creating its 

complete hiearchical tree in memory. 

 SAX Parser: Parses the document on event based triggers. Does  not load  the  complete document  

into the memory. 

Difference between DOM and SAX: 

DOM SAX 

DOM is a tree based parsing method SAX is an event based parsing method 

We can insert or delete a node We can insert or delete a node 

Traverse in any direction Top to bottom traversing 

Stores   the  entire  XML  document  in  to memory 
before processing 

Parses node by node 

Occupies more memory Doesn’t store the XML in memory 

DOM preserves comments SAX doesn’t preserve comments. 

import javax.xml.parsers.*; 
import org.w3c.dom.*; 

import javax.xml.sax.*; 
import org.xml.sax.helpers.*; 

 

1. Java DOM Parser: 
The Document Object Model is an official recommendation of the World Wide Web Consortium 

(W3C). It defines an interface that enables programs to access and update the style, structure,and contents of 

XML documents. XML parsers that support the DOM implement that interface. In order to use this,  we need 

to know a lot about the structure of a document,  need to move parts of the document around  and   need  to   

use the information in the document more than once. When we parse an  XML  document  with  a  DOM  

parser, we get back a tree structure that contains all of the elements of your document. The DOM provides a 

variety of functions you can use to examine the contents and structure of the document. 

DOM interfaces: 

The DOM defines several Java interfaces. Here are the most common interfaces: 

 Node: The base datatype of the DOM. 

 Element: The vast majority of the objects you'll deal with are Elements. 

 Attr: Represents an attribute of an element. 

 Text: The actual content of an Element or Attr. 

 Document: Represents entire XML document, a Document object is often referred to as a DOM 

tree. 

Common DOM methods: 

When you are working with the DOM, there are several methods you'll use often: 

 Document.getDocumentElement() - Returns the root element of the document. 

 Node.getFirstChild() - Returns the first child of a given Node. 

 Node.getLastChild() - Returns the last child of a given Node. 

 Node.getNextSibling() - These methods return the next sibling of a given Node. 

 Node.getPreviousSibling() - These methods return the previous sibling of a given Node. 

 Node.getAttribute(attrName) - For a given Node, returns the attribute with the requested name. 

 
Steps to Use DOM parser: 

Following are the steps used while parsing a document using DOM Parser. 
 



P a g e | 26 

 

1. Import XML-related packages 

import org.w3c.dom.*; 

import javax.xml.parsers.*; 

import java.io.*; 

2. Create a DocumentBuilder 

DocumentBuilderFactory factory =DocumentBuilderFactory.newInstance(); 
DocumentBuilder builder = factory.newDocumentBuilder(); 

3. Create a Document from a file or stream 

StringBuilder strb = new StringBuilder(); 

strb.append("<?xml version="1.0"?> <bookstore> </bookstore>"); 

ByteArrayInputStream input = new ByteArrayInputStream(strb.toString().getBytes("UTF-8")); 

Document doc = builder.parse(input); 

4. Extract the root element 

Element root = document.getDocumentElement(); 

5. Examine attributes 

getAttribute("attributeName"); 

getAttributes(); 

6. Examine sub-elements 

getElementsByTagName("subelementName"); 

getChildNodes(); 

 

Example for using of DOM parser: 

class.xml 
<?xml version="1.0"?> 
<class> 

 

 

 

 

 

 

 

 

 

 

 
</class> 

<student rollno="393"> 

<firstname>dinkar</firstname> 

<lastname>kad</lastname> 

<nickname>dinkar</nickname> 

<marks>85</marks> 

</student> 

<student rollno="493"> 

<firstname>Vaneet</firstname> 

<lastname>Gupta</lastname> 

<nickname>vinni</nickname> 

<marks>95</marks> 

</student> 

DomParserDemo.java 

import java.io.File; 

import javax.xml.parsers.DocumentBuilderFactory; 

import javax.xml.parsers.DocumentBuilder; 
import org.w3c.dom.Document; 

import org.w3c.dom.NodeList; 

import org.w3c.dom.Node; 

import org.w3c.dom.Element; 

public class DomParserDemo 

{ 

public static void main(String[] args){ 

try { 

File inputFile = new File("input.txt"); 
 

 
 



P a g e | 27 
 

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance(); 

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder(); 

Document doc = dBuilder.parse(inputFile); 

doc.getDocumentElement().normalize(); 

System.out.println("Root element :" + doc.getDocumentElement().getNodeName()); 

NodeList nList = doc.getElementsByTagName("student"); 

System.out.println(" ---------------------------- "); 
for (int temp = 0; temp < nList.getLength(); temp++) 

{ Node nNode = nList.item(temp); 

System.out.println("\nCurrent Element :" + nNode.getNodeName()); 

if (nNode.getNodeType() == Node.ELEMENT_NODE) 

{ Element eElement = (Element) nNode; 

System.out.println("Student roll no : " + eElement.getAttribute("rollno")); 

System.out.println("First Name : 

"+eElement.getElementsByTagName("firstname").item(0).getTextContent()); 

System.out.println("Last Name : " + 

eElement.getElementsByTagName("lastname").item(0).getTextContent()); 

System.out.println("Nick Name : 

"+eElement.getElementsByTagName("nickname").item(0).getTextContent()); 

System.out.println("Marks : " +eElement.getElementsByTagName("marks").item(0).getTextContent()); 

} 

} 

} catch (Exception e) { e.printStackTrace(); } 

} 

} 
 

2. Java SAX Parser: 
SAX (the Simple API for XML) is an event-based parser for xml  documents.Unlike a  DOM parser, a  

SAX parser creates no parse tree. SAX is a streaming interface for XML,  which  means  that  applications 

using SAX receive event notifications about  the XML document  being processed an element,  and attribute,  

at a time in sequential order starting at the top of the document, and ending with the closing of the ROOT 

element. Reads an XML document from top to bottom, recognizing the tokens that make up a well-formed 

XML document. Tokens are processed in the same order that they appear in the document. Reports the 

application program the nature of tokens that the parser has encountered as they occur. The application  

program provides an "event" handler that must be registered with the parser. As the tokens are identified, 

callback methods in the handler are invoked with the relevant information 

 

ContentHandler Interface 

This interface specifies the callback methods that the SAX parser uses to notify an application program of 

the components of the XML document that it has seen. 

 void startDocument() - Called at the beginning of a document. 

 void endDocument() - Called at the end of a document. 

 void startElement(String uri, String localName, String qName, Attributes atts) - Called at the 

beginning of an element. 

 void endElement(String uri, String localName,String qName) - Called at the end of an element. 

 void characters(char[] ch, int start, int length) - Called when character data is encountered. 

 void ignorableWhitespace( char[] ch, int start, int length) - Called when a DTD is present and 

ignorable whitespace is encountered. 

 void processingInstruction(String target, String data) - Called when a processing instruction is 

recognized. 
 

 

 



P a g e | 28 
 

 void setDocumentLocator(Locator locator)) - Provides a Locator that can be used to identify 

positions in the document. 

 void skippedEntity(String name) - Called when an unresolved entity is encountered. 

 void startPrefixMapping(String prefix, String uri) - Called when a new namespace mapping is 

defined. 

 void endPrefixMapping(String prefix) - Called when a namespace definition ends its scope. 

Attributes Interface 

This interface specifies methods for processing the attributes connected to an element. 

 int getLength() - Returns number of attributes. 

 String getQName(int index) 

 String getValue(int index) 

 String getValue(String qname) 

 

Example for using of SAX parser: 

class.xml 
<?xml version="1.0"?> 

<class> 

 

 

 

 

 

 

 

 

 

 

 
</class> 

<student rollno="393"> 

<firstname>dinkar</firstname> 

<lastname>kad</lastname> 

<nickname>dinkar</nickname> 

<marks>85</marks> 

</student> 

<student rollno="493"> 

<firstname>Vaneet</firstname> 

<lastname>Gupta</lastname> 

<nickname>vinni</nickname> 

<marks>95</marks> 

</student> 

SAXParserDemo.java 

import java.io.File; 

import javax.xml.parsers.SAXParser; 

import javax.xml.parsers.SAXParserFactory; 

import org.xml.sax.Attributes; 

import org.xml.sax.SAXException; 

import org.xml.sax.helpers.DefaultHandler; 

 
public class SAXParserDemo { 

public static void main(String[] args){ 

try { 

File inputFile = new File("input.txt"); 

SAXParserFactory factory = SAXParserFactory.newInstance(); 

SAXParser saxParser = factory.newSAXParser(); 

UserHandler userhandler = new UserHandler(); 

saxParser.parse(inputFile, userhandler); 

} catch (Exception e) { e.printStackTrace(); } 

} 

} 

class UserHandler extends DefaultHandler { 

boolean bFirstName = false; 
 

 
 



P a g e | 29 
 

boolean bLastName = false; 

boolean bNickName = false; 

boolean bMarks = false; 

public void startElement(String uri, String localName, String qName, Attributes attributes) 

throws SAXException { 

if (qName.equalsIgnoreCase("student")) 

{ String rollNo = attributes.getValue("rollno"); 

System.out.println("Roll No : " + rollNo); 

} 

else if (qName.equalsIgnoreCase("firstname")) 

{ bFirstName = true; } 

else if (qName.equalsIgnoreCase("lastname")) 

{ bLastName = true; } 

else if (qName.equalsIgnoreCase("nickname")) 

{ bNickName = true; } 

else if (qName.equalsIgnoreCase("marks")) 

{ bMarks = true; } 

} 

public void endElement(String uri, String localName, String qName) throws SAXException { 

if (qName.equalsIgnoreCase("student")) 

{ System.out.println("End  Element :" + qName); } 

} 

public void characters(char ch[], int start, int length) throws SAXException { 

if (bFirstName) { 

System.out.println("First Name: " + new String(ch, start, length)); 

bFirstName = false; 

} else if (bLastName) { 

System.out.println("Last Name: " + new String(ch, start, length)); 

bLastName = false; 

} else if (bNickName) { 

System.out.println("Nick Name: " + new String(ch, start, length)); 

bNickName = false; 

} else if (bMarks) { 

System.out.println("Marks: " + new String(ch, start, length)); 

bMarks = false; 

} 

} 

} 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



AJAX (Asynchronous JavaScript and XML) 
AJAX is an acronym for Asynchronous JavaScript and XML. It is a group of inter-related 

technologies like javascript, dom, xml, html, css etc. AJAX allows you to send and receive data 
asynchronously without reloading the entire web page. So it is fast. 

AJAX allows you to send only important information to the server not the entire page. So only 

valuable data from the client side is routed to the server side. It makes your application interactive and 
faster. 

Where it is used? 
There are too many web applications running on the web that are using AJAX Technology. Some 

are:  

1. Gmail 

2. Facebook 

3. Twitter 

4. Google maps 

5. YouTube etc., 



 

Synchronous Vs. Asynchronous Application 
Before understanding AJAX, let’s understand classic web application model and AJAX Web 

application model. 
 

Synchronous (Classic Web-Application Model)

A synchronous request blocks the client until operation completes i.e. browser is not 
unresponsive. In such case, JavaScript Engine of the browser is blocked. 

 

 
 

 
 

As you can see in the above image, full page is refreshed at request time and user is 
blocked until request completes. Let's understand it another way. 

 

 

 
 

Asynchronous (AJAX Web-Application Model)

An asynchronous request doesn’t block the client i.e. browser is responsive. At that time, user 
can perform other operations also. In such case, JavaScript Engine of the browser is not blocked. 

 

 

 

 
 

As you can see in the above image, full page is not refreshed at request time and user gets 
response from the AJAX Engine. Let's try to understand asynchronous communication by the 
image given below. 

 

 

 
 

AJAX Technologies 
AJAX is not a Technology but group of inter-related technologies. AJAX Technologies includes: 

 
HTML/XHTML and CSS

 
DOM

 
XML or JSON(JavaScript Object Notation)

 
XMLHttpRequest

 
JavaScript

 

 HTML/XHTML and CSS
These technologies are used for displaying content and style. It is mainly used for 

presentation. 

 

 DOM

It is used for dynamic display and interaction with data. 
 

 XML or JSON

For carrying data to and from server. JSON is like XML but short and faster than XML. 
 

 XMLHttpRequest

For asynchronous communication between client and server. 
 

 
 

 

 



Unit-3 AJAX 

 JavaScript

It is used to bring above technologies together. Independently, it is used mainly for client-side 

validation. 

 

Understanding XMLHttpRequest 
An object of XMLHttpRequest is used for asynchronous communication between client and 

server. It performs following operations: 

1. Sends data from the client in the background 

2. Receives the data from the server 

3. Updates the webpage without reloading it. 

 

 Properties of XMLHttpRequest object:

Property Description 

onReadyStateChange It is called whenever readystate attribute changes. It must not be 
used with synchronous requests. 

readyState Represents the state of the request. It ranges from 0 to 4. 
 

0 UNOPENED open() is not called. 

1 OPENED open is called but send() is not called. 
2 HEADERS_RECEIVED send() is called, and headers and 
status are available. 

3 LOADING Downloading data; responseText holds the data. 

4 DONE The operation is completed fully. 

reponseText Returns response as TEXT. 

responseXML Returns response as XML 

 

 
Method Description 

void open(method, URL) Opens the request specifying get or post method 
and url. 

void open(method, URL, async) Same as above but specifies asynchronous or not. 

void open(method, URL, async, 

username, password) 

Same as above but specifies username and 

password. 

void send() Sends GET request. 

void send(string) Sends POST request. 

setRequestHeader(header,value) It adds request headers. 

 

 
1. User sends a request from the UI and a javascript call goes to XMLHttpRequest object. 

2. HTTP Request is sent to the server by XMLHttpRequest object. 

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc. 

4. Data is retrieved. 

5. Server sends XML data or JSON data to the XMLHttpRequest callback function. 

6. HTML and CSS data is displayed on the browser. 
 
 

 

 

 

 

 



Unit-3 AJAX 
 
 
 
 
 

Integrating PHP and AJAX:- 
 

The following example will demonstrate how a web page can communicate with a web server 

while a user type characters in an input field: 

 

Example 
 

Start typing a name in the input field below: 

 
First name: 

 

Suggestions: 

 

 
 

Example Explained 

In the example above, when a user types a character in the input field, a function called 

"showHint()" is executed. 

 

The function is triggered by the onkeyup event. 

Here is the HTML code: 

Example 

<html> 

<head> 

<script> 

function showHint(str) { 

if (str.length == 0) { 

document.getElementById("txtHint").innerHTML = ""; 

return; 
} else



var xmlhttp = new XMLHttpRequest(); 

xmlhttp.onreadystatechange = function() { 

if (this.readyState == 4 && this.status == 200) { 
document.getElementById("txtHint").innerHTML = this.responseText; 

} 

}; 

xmlhttp.open("GET", "gethint.php?q=" + str, true); 

xmlhttp.send(); 

} 

} 

</script> 

</head> 

<body> 
 

<p><b>Start typing a name in the input field below:</b></p> 

<form> 

First name: <input type="text" onkeyup="showHint(this.value)"> 

</form> 

<p>Suggestions: <span id="txtHint"></span></p> 

</body> 

</html> 

 

Code explanation: 

 

First, check if the input field is empty (str.length == 0). If it is, clear the content of the txtHint 
placeholder and exit the function. 

 

However, if the input field is not empty, do the following: 

 

 Create an XMLHttpRequest object

 Create the function to be executed when the server response is ready

 Send the request off to a PHP file (gethint.php) on the server

 Notice that q parameter is added to the url (gethint.php?q="+str)

 And the str variable holds the content of the input field

 

 
 

The PHP File - "gethint.php" 

The PHP file checks an array of names, and returns the corresponding name(s) to the 

browser: 
 

<?php 

// Array with names 

$a[] = "Anna"; 

$a[] = "Brittany"; 

$a[] = "Cinderella"; 

$a[] = "Diana"; 

$a[] = "Eva"; 

$a[] = "Fiona"; 

$a[] = "Gunda"; 

$a[] = "Hege"; 

$a[] = "Inga"; 

$a[] = "Johanna"; 

 



$a[] = "Kitty"; 

$a[] = "Linda"; 

$a[] = "Nina"; 

$a[] = "Ophelia"; 

$a[] = "Petunia"; 

$a[] = "Amanda"; 

$a[] = "Raquel"; 

$a[] = "Cindy"; 

$a[] = "Doris"; 

$a[] = "Eve"; 

$a[] = "Evita"; 

$a[] = "Sunniva"; 

$a[] = "Tove"; 

$a[] = "Unni"; 

$a[] = "Violet"; 

$a[] = "Liza"; 

$a[] = "Elizabeth"; 

$a[] = "Ellen"; 

$a[] = "Wenche"; 

$a[] = "Vicky"; 

 

// get the q parameter from URL 

$q = $_REQUEST["q"]; 

 

$hint = ""; 

 

// lookup all hints from array if $q is different from "" 

if ($q !== "") { 

$q = strtolower($q); 

$len=strlen($q); 

foreach($a as $name) { 

if (stristr($q, substr($name, 0, $len))) { 

if ($hint === "") { 

$hint = $name; 

} else { 

$hint .= ", $name"; 

} 

} 

} 

} 
 

// Output "no suggestion" if no hint was found or output correct values 
echo $hint === "" ? "no suggestion" : $hint; 

?> 
 

 
 

 

 

 

 

 

 



Introduction to Web Services 
Technology keep on changing, users were forces to learn new application on continuous basis. 

With internet, focus is shifting to-wards services based software. Users may access these services using 

wide range of devices such as PDAs, mobile phones, desktop computers etc. Service oriented software 

development is possible using man known techniques such as COM, CORBA, RMI, JINI, RPC etc. some 
of them are capable of delivering services over web & some or not. Most of these technologies uses 

particular protocols for communication & with no standardization. Web service is the concept of creating 

services that can be accessed over web. Most of these 

 

 
 

What are Web Services? 

A web services may be defines as: An application component accessible via standard web 
protocols. It is like unit of application logic. It provides services & data to remote clients & other 
applications. Remote clients & application access web services with internet protocols. They use XML for 
data transport & SOAP for using services. Accessing service is independent of implementation. With 

component development model, web service must have following characteristics: 
 

Registration with lookup service
 

Public interface for client to invoke service



It should use standard web protocols for communication 
 

It should be accessible over web
 

It should support loose coupling between uncoupled distributed systems

 
Web services receive information from clients as messages, containing instructions about what client 

wants, similar to method calls with parameters. These message delivered by web services are encoded 

using XML.XML enabled web services are interoperable with other web services. 

 

Web Service Technologies: 
Wide variety of technologies supports web services. Following technologies are available 

for creation of web services. These are vendor neutral technologies. They are: 
 

Simple Object Access Protocol(SOAP)
 

Web Services Description Language(WSDL)
 

UDDI(Universal Description Discovery and Integration)

 
Simple Object Access Protocol (SOAP): 

SOAP is a light weight & simple XML based protocol. It enables exchange of structured & typed 

information on web by describing messaging format for machine to machine communication. It also 
enables creation of web services based on open infrastructure. SOAP consists of three parts: 



SOAP Envelope: defines what is in message, who is the recipient, whether message is optional or 
mandatory 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 





SOAP Encoding Rules: defines set of rules for exchanging instances of application defined data types 



SOAP RPC Representation: defines convention for representing remote procedure calls & response 

 

SOAP can be used in combination with variety of existing internet protocols & formats including 

HTTP, SMTP etc. Typical SOAP message is shown below: 

<IVORY:Envelope xmlns:IVORY=”http://schemas.xmlsoap.org/soap/envelope” 
IVORY:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding”> 

<IVORY:Body> 
<m:GetLastTradePrice xmlns:m=”Some-URI”> 
<symbol>DIS</symbol> 
</m:GetLastTradePrice> 

</IVORY:Body> 

</IVORY:Envelope> 

 
The consumer of web service creates SOAP message as above, embeds it in HTTP POST request 

& sends it to web service for processing: 

 

POST /StockQuote HTTP/1.1 

Host: www.stockquoteserver.com 

Content-Type: text/xml; 
charset=”utf-8” 

Content-Length: nnnn 

SOAPAction: “Some-URI” 

…. 

SOAP Message 
…. 
The message now contains requested stock price. A typical returned SOAP message may look like 

following: 

 
<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope” 

SOAP-ENV:encodingStyle=” http://schemas.xmlsoap.org/soap/encoding” /> 

<SOAP-ENV:Body> 
<m:GetLastTradePrice xmlns:m=”Some-URI”> 

<Price>34.5</Price> 
</m:GetLastTradePrice> 

</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

 

Interoperability: 

The major goal in design of SOAP was to allow for easy creation of interoperable distributed web 

services. Few details of SOAP specifications are open for interpretation; implementation may differ across 

different vendors. SOAP message though it is conformant XML message, may not strictly follow SOAP 

specification. 

 

Implementations: 

SOAP technology was developed by DevelopMentor, IBM, Lotus, Microsoft etc. More than 50 
vendors have currently implemented SOAP. Most popular implementations are by Apache which is open 

source java based implementation & by Microsoft in .NET platform. SOAP specification has been 

submitted to W3C, which is now working on new specifications called XMLP (XML Protocol) 

 

SOAP Messages with Attachments (SwA) 
SOAP can send message with an attachment containing of another document or image etc. On 

Internet, GIF, JPEG data formats are treated as standards for image transmission. Second iteration of 
SOAP specification allowed for attachments to be combined with SOAP message by using multipart 

 

 
 

 

 

 

http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://www.stockquoteserver.com/
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding


MIME structure. This multi part structure is called as SOAP Message Package. This new specification 
was developed by HP & Microsoft. Sample SOAP message attachment is shown here: 

MIME-Version: 1.0 
Content-Type: Multipart/Related; boundary=MIME_boundary; 
type=text/xml; start=”<myimagedoc.xml@mystie.com>” 
Content-Description: This is the optional message description. 

--MIME_boundary 
Content-Type: text/xml; charset=UTF-8 

Content-Transfer-Encoding: 8bit 

Content-ID: <myimagedoc.xml@mysite.com> 
<?xmll version=‟  1.0‟ ?> 

<SOAP-ENV: Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope” 
<SOAP-ENV:Body> 

… 

<theSignedForm href=”cid:myimage.tiff@mysite.com” /> 

… 

</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

--MIME_boundary 
Content-Type: image/tiff 

Content-Transfer-Encoding: binary 
Content-ID: <myimagedoc.xml@mysite.com> 

…binary TIFF image… 
--MIME_boundary-- 

 
Web Services Description Language (WSDL) 

WSDL is an XML format for describing web service interface. WSDL file defines set of 
operations permitted on the server & format that client must follow while requesting service. WSDL file 

acts like contract between client & service for effective communication between two parties. Client has to 

request service by sending well formed & conformant SOAP request. 

 

If we are creating web service that offered latest stock quotes, we need to create WSDL file on 

server that describes service. Client obtains copy of this file, understand contract, create SOAP request 

based on contract & dispatch request to server using HTTP post. Server validates the request, if found 

valid executes request. The result which is latest stock price for requested symbol is then returned to client 

as SOAP response. 

 

WSDL Document: 
WSDL document is an XML document that contains of set of definitions. First we declare 

name spaces required by schema definition: 

<schema xmlns=”http://www.w3.org/2000/10/XMLSchema” 

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/” 
targetNameSpace=http://schemas.xmlsoap.org/wsdl/ elementFormDefault=”qualified”> 

 

The root element is definitions as shown below: 

<wsdl:defiinitions name=”nmtoken”? targetNameSpace=”uri”?> 
<import namespace=”uri” location=”uri”/> 

<wsdl:documentation ….. />? 

… 
</wsdl:definitions> 

 
The name attribute is optional & can serve as light weight form of documentation. The nmtoken 

represents name token that are qualified strings similar to CDATA, but character usage is limited to letters, 
digits, underscores, colons, periods & dashes. A targetNamespace may be specified by providing uri. The 

import tag may be used to associate namespace with document locations. Following code segment shows 

how declared namespace is associated with document location specified in import statement: 

<definitions name=”StockQuote” 
targetNameSpace=”http://example.com/stockquote/defiinitions” 

 

 

 

 
 

mailto:myimagedoc.xml@mystie.com
mailto:myimagedoc.xml@mysite.com
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
mailto:myimage.tiff@mysite.com
mailto:myimage.tiff@mysite.com
mailto:myimagedoc.xml@mysite.com
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/defiinitions
http://example.com/stockquote/defiinitions


xmlns:tns=”http://example.com/stockquote/definitions” 
xmlns:xsdl=”http://example.com/stockquote/schemas” 
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/‟ 
xmlns=”http://schemas.xmlsoap.org/wsdl/”> 

<import namespace=”http://example.com/stockquote/schemas” 

Location=”http://example.com/stockquote/stockquote.xsd”/> 

 
Finally, optional wsdl:documentation element is used for declaring human readable 

documentation. The element may contain any arbitrary text. There are six major elements in document 
structure that describes service. These are as follows: 



Types Element: it provides definitions for data types used to describe how messages will 
exchange data. Syntax for types element is as follows: 

<wsdl:types> ? 

<wsdl:documentation 
…/> <xsd:schema …/> 

<-- extensibility element --> 
</wsdl:types> 

 

The wsdl:documentation tag is optional as in case of definitions. The xsd type system may be used 
to define types in message. WSDL allows type systems to be added via extensibility element. 

 



Message Element: It represents abstract definition of data begin transmitted. Syntax for message element: 

<wsdl:message name=”nktoken”> * 
<wsdl;documentation …/> 

<part name=”nmtoken” element=”qname”? type=”qname”? /> * 
</wsdl:message> 

 
The message name attribute is used for defining unique name for message with in 

document scope. The wsdl:documentation is optional & may be used for declaring human 

readable documentation. The message consists of one or more logical parts. The part describes 
logical abstract content of message. Each part consists of name & optional element & type 

attributes.\ 



Port Type Element: It defines set of abstract operations. An operation consists of both input & 
output messages. The operation tag defines name of operation, input defines input for operation & 
output defines output format for result. The fault element is used for describing contents of SOAP 
fault details element. It specifies abstract message format for error messages that may be output as 
result of operation: 
<wsdl:portType name=”nmtoken”>* 

<wsdl:documentation …./>? 

<wsdl:operation name=”nmtoken”>* 
<wsdl:documentation …./>? 

<wsdl:input name=”nmtoken”? message=”qname”>? 
<wsdl:documentation …./>? 
</wsdl:input> 

<wsdl:output name=”nmtoken”? message=”qname”>? 

<wsdl:documentation …./>? 

</wsdl:output> 
<wsdl:fault name=”nmtoken”? message=”qname”>? 
<wsdl:documentation …./>? 

</wsdl:fault> 
</wsdl:operation> 

</wsdl:portType> 



Binding Element: It defines protocol to be used & specifies data format for operations & messages defined 
by particular portType. The full syntax for binding is given below: 

 

 

 

 

 
 

http://example.com/stockquote/definitions
http://example.com/stockquote/definitions
http://example.com/stockquote/schemas
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/schemas
http://example.com/stockquote/schemas
http://example.com/stockquote/stockquote.xsd
http://example.com/stockquote/stockquote.xsd
http://example.com/stockquote/stockquote.xsd


<wsdl:binding name=”nmtoken” type=”qname”> * 

<wsdl:documentation …./>? 

<--Extensibility element -->* 
<wsdl:operation name=”nmtoken”>* 

<wsdl:documentation …./>? 
<--Extensibility element -->* 

<wsdl:input> ? 

<wsdl:documentation …./>? 
<--Extensibility element -->* 

</wsdl:input> 

<wsdl:output> ? 
<wsdl:documentation …./>? 
<--Extensibility element -->* 

</wsdl:output> 

<wsdl:fault name=”nmtoken”> * 

<wsdl:documentation …./>? 
<--Extensibility element -->* 

</wsdl:fault> 
</wsdl:operation> 

</wsdl:binding> 

 
The operation in WSDL file can be document oriented or remote procedure call (RPC) 

oriented. The style attribute of <soap:binding> element defines type of operation. If operation is 
document oriented, input & output messages will consist of XML documents. If operation is RPC 

oriented, input message contains operations input parameters & output message contains result of 

operation. 


Port Element: It defines individual end point by specifying single address for binding: 
<wsdl:port name=”nmtoken” binding=”qname‟> * 

<--Extensibility element (1) --> 
</wsdl:port> 

 

The name attribute defines unique name for port with current WSDL document. The binding 
attribute refers to binding & extensibility element is used to specify address information for port. 


Service Element: it aggregates set of related ports. Each port specifies address for binding: 
<wsdl:service name=”nmtoken”> * 

<wsdl:documentation …./>? 

<wsdl:port name=”nktoken” binding=”qname”> * 

<wsdl:documentation …/> ? 

<--Extensibility element --> 

</wsdl:port> 
<--Extensibility element --> 

</wsdl:service> 

 
Universal Description, Discovery & Integration (UDDI) 

We need to publish web services so that customers & business partners can use the services. It 

requires common registry to register web service for clients to find it. For this several vendors including 
IBM, HP, Oracle, Sun Microsystem etc. formed an industry consortium known as UDDI. Today more than 

250 companies have joined UDDI project. The main task of this project is to develop specifications  for 

web based business registry. The registry should be able to describe web service & allow others to discover 
registered web services. 

UDDI allows any organization to publish information about its web services. The framework 

defines standard for businesses to share information, describe their services & their business & to decide 
what information is made public & what information is kept private. The interface is based on XML & 

SOAP, uses HTTP to interact with registry. 
 

 

 

 

 
 

 



Unit-3 AJAX 

Registry itself holds information about business such as company name, contact etc. it holds both 

descriptive & technical information about web service. It provides search facilities that allow to search 
specific industry segment or geographic location. 

 
Implementation: 

This is global, public registry called UDDI business registry. It is possible for individuals to set up 
private UDDI registries. The implementations for creating private registries are available from IBM, Idoox 

etc. Microsoft has developed UDDI SDK that allows visual basic programmer to write program code to 

interact with UDDI registry. The use of SDK greatly simplifies interaction with registry & shields 
programmer from local level details of XML & SOAP. 

 
Electronic Business XML (ebXML): 

ebXML is set of specifications that allows businesses to collaborate. It enables global electronic 

market place where business can meet & tranasact with help of XML based messages. Business may be 
geographically located anywhere in world & could be of any size to participate in global marketplace. The 

framework defines specifications for sharing of web based business services. It includes specifications for 

message service, collaborative partner agreements, core components, business process methodology, 
registry & repository. 

 
It defines registry & repository where business can register themselves by providing their contact 

information, address & so on. Such information is called Core Component. After business has registered 

with ebXML registry, other partners can look up registry to locate that business. Once business partner is 
located, the core components of located business are downloaded. Once buyer is satisfied with fact that 

seller service can meet its requirements, it negotiates contract with seller. Such collaborative partner 

agreements are defined in ebXML. Once both parties agree on contract terms, sign agreements & 
collaborative business transaction by exchanging their private documents. ebXML provides marketplace & 

defines several XML based documents for business to join & transact in such marketplace. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



  

Web Technologies 
UNIT-IV 

 

What You Should Already Know 

Before you continue you should have a basic understanding of the following: 

 

 HTML 

 JavaScript 

 

 
 

What is PHP? 

 PHP stands for PHP: Hypertext Preprocessor 

 PHP is a widely-used, open source scripting language 

 PHP scripts are executed on the server 

 PHP is free to download and use 

 

 

What is a PHP File? 

 PHP files can contain text, HTML, JavaScript code, and PHP code 

 PHP code are executed on the server, and the result is returned to the browser as plain 

HTML 

 PHP files have a default file extension of ".php" 
 
 

 

What Can PHP Do? 

 PHP can generate dynamic page content 

 PHP can create, open, read, write, and close files on the server 

 PHP can collect form data 

 PHP can send and receive cookies 

 PHP can add, delete, modify data in your database 

 PHP can restrict users to access some pages on your website 

 PHP can encrypt data 

 

With PHP you are not limited to output HTML. You can output images, PDF files, and even 

Flash movies. You can also output any text, such as XHTML and XML. 

 

Why PHP? 

 PHP runs on different platforms (Windows, Linux, Unix, Mac OS X, etc.) 

 PHP is compatible with almost all servers used today (Apache, IIS, etc.) 

 PHP has support for a wide range of databases 

 PHP is free. Download it from the official PHP resource: www.php.net 

 PHP is easy to learn and runs efficiently on the server side 

http://www.php.net/


  

What Do I Need? 

To start using PHP, you can: 

 

 Find a web host with PHP and MySQL support 

 Install a web server on your own PC, and then install PHP and MySQL 
 
 

 

Use a Web Host With PHP Support 

If your server has activated support for PHP you do not need to do anything. 

 

Just create some .php files, place them in your web directory, and the server will 

automatically parse them for you. 

 

You do not need to compile anything or install any extra tools. 

Because PHP is free, most web hosts offer PHP support. 

 

 

Set Up PHP on Your Own PC 

However, if your server does not support PHP, you must: 

 

 install a web server 

 install PHP 

 install a database, such as MySQL 

 
The official PHP website (PHP.net) has installation instructions for PHP: 
http://php.net/manual/en/install.php 

 

The PHP script is executed on the server, and the plain HTML result is sent back to the 

browser. 
 
 

 

Basic PHP Syntax 

A PHP script always starts with <?php and ends with ?>. A PHP script can be placed 

anywhere in the document. 

 

On servers with shorthand-support, you can start a PHP script with <? and end with ?>. 

 

For maximum compatibility, we recommend that you use the standard form (<?php) rather 

than the shorthand form. 

 

<?php 

// PHP code goes here 

?> 

http://php.net/manual/en/install.php


  

The default file extension for PHP files is ".php". 

 

A PHP file normally contains HTML tags, and some PHP scripting code. 

 

Below, we have an example of a simple PHP script that sends the text "Hello World!" back to 

the browser: 

 

Example 

<!DOCTYPE html> 

<html> 

<body> 

 

<?php 

echo "Hello World!"; 

?> 
 

</body> 

</html> 

 

Show example » 
 

Each code line in PHP must end with a semicolon. The semicolon is a separator and is used 

to distinguish one set of instructions from another. 

 

There are two basic statements to output text with PHP: echo and print. 

 

In the example above we have used the echo statement to output the text "Hello World". 
 
 

 

Comments in PHP 

In PHP, we use // to make a one-line comment, or /* and */ to make a comment block: 

 

Example 

<!DOCTYPE html> 

<html> 

<body> 

 

<?php 

//This is a comment 
 

/* 

This is 

a comment 

block 

*/ 

?> 

http://www.w3schools.com/php/showphp.asp?filename=demo_syntax


  

</body> 

</html> 

 
 

Variables are "containers" for storing information. 
 
 

 

Do You Remember Algebra From School? 

Do you remember algebra from school? x=5, y=6, z=x+y 

 

Do you remember that a letter (like x) could be used to hold a value (like 5), and that you 

could use the information above to calculate the value of z to be 11? 

 

These letters are called variables, and variables can be used to hold values (x=5) or 

expressions (z=x+y). 
 
 

 

PHP Variables 

As with algebra, PHP variables are used to hold values or expressions. 

 

A variable can have a short name, like x, or a more descriptive name, like carName. 

Rules for PHP variable names: 

 Variables in PHP starts with a $ sign, followed by the name of the variable 

 The variable name must begin with a letter or the underscore character 

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0- 

9, and _ ) 

 A variable name should not contain spaces 

 Variable names are case sensitive (y and Y are two different variables) 
 
 

 

Creating (Declaring) PHP Variables 

PHP has no command for declaring a variable. 

 

A variable is created the moment you first assign a value to it: 

 

$myCar="Volvo"; 

 

After the execution of the statement above, the variable myCar will hold the value Volvo. 

 

Tip: If you want to create a variable without assigning it a value, then you assign it the value 

of null. 

 

Let's create a variable containing a string, and a variable containing a number: 



  

<?php 

$txt="Hello World!"; 
$x=16; 

?> 

 

Note: When you assign a text value to a variable, put quotes around the value. 
 
 

 

PHP is a Loosely Typed Language 

In PHP, a variable does not need to be declared before adding a value to it. 

 

In the example above, notice that we did not have to tell PHP which data type the variable is. 

PHP automatically converts the variable to the correct data type, depending on its value. 

In a strongly typed programming language, you have to declare (define) the type and name of 

the variable before using it. 
 
 

 

PHP Variable Scope 

The scope of a variable is the portion of the script in which the variable can be referenced. 

PHP has four different variable scopes: 

 local 

 global 

 static 

 parameter 
 
 

 

Local Scope 

A variable declared within a PHP function is local and can only be accessed within that 

function. (the variable has local scope): 

 

<?php 

$a = 5; // global scope 
 

function myTest() 

{ 

echo $a; // local scope 

} 

 

myTest(); 

?> 



  

The script above will not produce any output because the echo statement refers to the local 

scope variable $a, which has not been assigned a value within this scope. 

 

You can have local variables with the same name in different functions, because local 

variables are only recognized by the function in which they are declared. 

 

Local variables are deleted as soon as the function is completed. 

 

Global Scope 

Global scope refers to any variable that is defined outside of any function. 
Global variables can be accessed from any part of the script that is not inside a function. 
To access a global variable from within a function, use the global keyword: 

<?php 

$a = 5; 

$b = 10; 

 

function myTest() 

{ 

global $a, $b; 

$b = $a + $b; 

} 

 

myTest(); 

echo $b; 

?> 

 

The script above will output 15. 

 

PHP also stores all global variables in an array called $GLOBALS[index]. Its index is the 

name of the variable. This array is also accessible from within functions and can be used to 

update global variables directly. 

 

The example above can be rewritten as this: 

 

<?php 

$a = 5; 

$b = 10; 
 

function myTest() 

{ 

$GLOBALS['b'] = $GLOBALS['a'] + $GLOBALS['b']; 

} 

 

myTest(); 

echo $b; 

?> 
 
 

 

Static Scope 



  

When a function is completed, all of its variables are normally deleted. However, sometimes 

you want a local variable to not be deleted. 

 

To do this, use the static keyword when you first declare the variable: 

static $rememberMe; 

Then, each time the function is called, that variable will still have the information it contained 

from the last time the function was called. 

 

Note: The variable is still local to the function. 
 
 

 

Parameters 

A parameter is a local variable whose value is passed to the function by the calling code. 

Parameters are declared in a parameter list as part of the function declaration: 

function myTest($para1,$para2,...) 

{ 

// function code 

} 

 

Parameters are also called arguments. We will discuss them in more detail when we talk 

about functions. 

 

 
 

A string variable is used to store and manipulate text. 
 
 

 

String Variables in PHP 

String variables are used for values that contain characters. 

 

In this chapter we are going to look at the most common functions and operators used to 

manipulate strings in PHP. 

 

After we create a string we can manipulate it. A string can be used directly in a function or it 

can be stored in a variable. 

 

Below, the PHP script assigns the text "Hello World" to a string variable called $txt: 

 

<?php 

$txt="Hello World"; 

echo $txt; 

?> 

 

The output of the code above will be: 



  

Hello World 

 

Now, lets try to use some different functions and operators to manipulate the string. 
 
 

 

 

 

The Concatenation Operator 

There is only one string operator in PHP. 

 

The concatenation operator (.) is used to put two string values together. 

 

To concatenate two string variables together, use the concatenation operator: 

 

<?php 

$txt1="Hello World!"; 

$txt2="What a nice day!"; 

echo $txt1 . " " . $txt2; 

?> 

 

The output of the code above will be: 

 

Hello World! What a nice day! 

 

If we look at the code above you see that we used the concatenation operator two times. This 

is because we had to insert a third string (a space character), to separate the two strings. 
 
 

 

The strlen() function 

The strlen() function is used to return the length of a string. 

Let's find the length of a string: 

<?php 
echo strlen("Hello world!"); 

?> 

 

The output of the code above will be: 

 

12 

 

The length of a string is often used in loops or other functions, when it is important to know 

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character in 

the string). 
 
 



  

The strpos() function 

The strpos() function is used to search for a character/text within a string. 

 

If a match is found, this function will return the character position of the first match. If no 

match is found, it will return FALSE. 

 

Let's see if we can find the string "world" in our string: 

 

<?php 

echo strpos("Hello world!","world"); 

?> 

 

The output of the code above will be: 

 

6 

 

The position of the string "world" in the example above is 6. The reason that it is 6 (and not 

7), is that the first character position in the string is 0, and not 1. 

 

 
 

The assignment operator = is used to assign values to variables in PHP. 

The arithmetic operator + is used to add values together. 

 

 

Arithmetic Operators 

The table below lists the arithmetic operators in PHP: 

 
Operator Name Description Example Result 

x + y Addition Sum of x and y 2 + 2 4 

x - y Subtraction Difference of x and y 5 - 2 3 

x * y Multiplication Product of x and y 5 * 2 10 

x / y Division Quotient of x and y 15 / 5 3 

  Remainder of x divided by 
5 % 2

 1 

x % y Modulus 
y 

10 % 8 2 

 

 

 

 
Assignment Operators 

The basic assignment operator in PHP is "=". It means that the left operand gets set to the 

value of the expression on the right. That is, the value of "$x = 5" is 5. 

 10 % 2 0 

- x Negation Opposite of x - 2  

a . b Concatenation Concatenate two strings "Hi" . "Ha" HiHa 

 



  

Assignment Same as... Description 

x = y x = y 
The left operand gets set to the value of the expression on the 

 

 

 

 

 

 
 

Incrementing/Decrementing Operators 

Operator Name Description 

++ x Pre-increment  Increments x by one, then returns x 

x ++ Post-increment  Returns x, then increments x by one 

-- x Pre-decrement Decrements x by one, then returns x 

x -- Post-decrement Returns x, then decrements x by one 

 

Comparison Operators 

Comparison operators allows you to compare two values: 
 
 

Operator Name Description Example 

x == y Equal True if x is equal to y 5==8 returns false 

x === y Identical 
True if x is equal to y, and they 

are of same type 
5==="5" returns false 

x != y Not equal True if x is not equal to y 5!=8 returns true 

x <> y Not equal True if x is not equal to y 5<>8 returns true 

x !== y Not identical 
True if x is not equal to y, or they 

are not of same type 
5!=="5" returns true 

x > y Greater than True if x is greater than y 5>8 returns false 

x < y Less than True if x is less than y 5<8 returns true 

x >= y 
Greater than or 
equal to 

True if x is greater than or equal 

to y 
5>=8 returns false 

x <= y 
Less than or equal 

True if x is less than or equal to y 5<=8 returns true 
to 

 
 

Logical Operators  

Operator Name Description Example 

 
x and y And 

 
True if both x and y are true 

x=6 

y=3 
  (x < 10 and y > 1) returns 

 right 

x += y x = x + y Addition 

x -= y x = x - y Subtraction 

x *= y x = x * y Multiplication 

x /= y x = x / y Division 

x %= y x = x % y Modulus 

a .= b a = a . b Concatenate two strings 

 



  

 

 
x or y Or 

True if either or both x and y are 
true 

 

 

x xor y Xor 
True if either x or y is true, but 
not both 

 

x && y And True if both x and y are true 

True if either or both x and y are 

true 

x=6 

y=3 

(x==6 or y==5) returns 

true 

x=6 

y=3 

(x==6 xor y==3) returns 

false 

x=6 

y=3 

(x < 10 && y > 1) returns 
true 

x=6 
x || y Or 

true 
y=3 

(x==5 || y==5) returns false 

x=6 

! x Not True if x is not true 

 

 

Array Operators 

y=3 

!(x==y) returns true 

 
Operator Name Description 

x + y Union Union of x and y 

x == y Equality True if x and y have the same key/value pairs 

x === y 

x != y 

Identity 

Inequality 

True if x and y have the same key/value pairs in the same 

order and of the same types 

True if x is not equal to y 

x <> y Inequality True if x is not equal to y 

x !== y Non-identity True if x is not identical to y 
 

 

 

 

 

Conditional statements are used to perform different actions based on different conditions. 
 
 

 

Conditional Statements 

Very often when you write code, you want to perform different actions for different 

decisions. 

 

You can use conditional statements in your code to do this. 

In PHP we have the following conditional statements: 

 if statement - use this statement to execute some code only if a specified condition is true 



  

 if...else statement - use this statement to execute some code if a condition is true and 
another code if the condition is false 

 if...elseif.... else statement - use this statement to select one of several blocks of code to be 

executed 

 switch statement - use this statement to select one of many blocks of code to be executed 
 
 

 

The if Statement 

Use the if statement to execute some code only if a specified condition is true. 

 
Syntax 

if (condition) code to be executed if condition is true; 

 
The following example will output "Have a nice weekend!" if the current day is Friday: 

 
<html> 

<body> 

 
<?php 

$d=date("D"); 

if ($d=="Fri") echo "Have a nice weekend!"; 

?> 

 
</body> 

</html> 

 
Notice that there is no ..else.. in this syntax. The code is executed only if the specified 

condition is true. 
 
 

 

The if...else Statement 

Use the if ... else statement to execute some code if a condition is true and another code if a 

condition is false. 

 
Syntax 

if (condition) 

{ 

code to be executed if condition is true; 

} 

else 

{ 

code to be executed if condition is false; 

} 



  

Example 

 

The following example will output "Have a nice weekend!" if the current day is Friday, 

otherwise it will output "Have a nice day!": 

 
<html> 

<body> 

 
<?php 

$d=date("D"); 

if ($d=="Fri") 

{ 

echo "Have a nice weekend!"; 

} 

else 

{ 

echo "Have a nice day!"; 

} 

?> 

 
</body> 

</html> 
 

 

 
 

 

The if...elseif....else Statement 

Use the if....elseif...else statement to select one of several blocks of code to be executed. 

 
Syntax 

if (condition) 

{ 

code to be executed if condition is true; 

} 

elseif (condition) 

{ 

code to be executed if condition is true; 

} 

else 

{ 

code to be executed if condition is false; 

} 
 

Example 

 
The following example will output "Have a nice weekend!" if the current day is Friday, and 

"Have a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice 

day!": 



  

<html> 

<body> 

 
<?php 

$d=date("D"); 

if ($d=="Fri") 

{ 

echo "Have a nice weekend!"; 

} 

elseif ($d=="Sun") 

{ 

echo "Have a nice Sunday!"; 

} 

else 

{ 

echo "Have a nice day!"; 

} 

?> 

 
</body> 

</html> 
 

 

 

 

 
 

 

The PHP Switch Statement 

Use the switch statement to select one of many blocks of code to be executed. 

 
Syntax 

switch (n) 

{ 

case label1: 

code to be executed if n=label1; 

break; 

case label2: 

code to be executed if n=label2; 

break; 

default: 

code to be executed if n is different from both label1 and label2; 

} 

 
This is how it works: First we have a single expression n (most often a variable), that is 

evaluated once. The value of the expression is then compared with the values for each case in 

the structure. If there is a match, the block of code associated with that case is executed. Use 



  

break to prevent the code from running into the next case automatically. The default 

statement is used if no match is found. 

 
Example 

<html> 

<body> 

 
<?php 

$x=1; 

switch 

($x) 

{ 

case 1: 

echo "Number 1"; 

break; 

case 2: 

echo "Number 2"; 

break; 

case 3: 

echo "Number 3"; 

break; 

default: 

echo "No number between 1 and 3"; 

} 

?> 

 
</body> 

</html> 

 
An array stores multiple values in one single variable. 

 
 

 

What is an Array? 

A variable is a storage area holding a number or text. The problem is, a variable will hold 

only one value. 

 

An array is a special variable, which can store multiple values in one single variable. 

 

If you have a list of items (a list of car names, for example), storing the cars in single 

variables could look like this: 

 
$cars1="Saab"; 

$cars2="Volvo"; 

$cars3="BMW"; 

 
However, what if you want to loop through the cars and find a specific one? And what if you 

had not 3 cars, but 300? 



  

The best solution here is to use an array! 

 

An array can hold all your variable values under a single name. And you can access the 

values by referring to the array name. 

 

Each element in the array has its own index so that it can be easily accessed. 

In PHP, there are three kind of arrays: 

 Numeric array - An array with a numeric index 

 Associative array - An array where each ID key is associated with a value 

 Multidimensional array - An array containing one or more arrays 
 
 

 

Numeric Arrays 

A numeric array stores each array element with a numeric index. 

There are two methods to create a numeric array. 

1. In the following example the index are automatically assigned (the index starts at 0): 

 
$cars=array("Saab","Volvo","BMW","Toyota"); 

 
2. In the following example we assign the index manually: 

 
$cars[0]="Saab"; 

$cars[1]="Volvo"; 

$cars[2]="BMW"; 

$cars[3]="Toyota"; 
 

Example 

 
In the following example you access the variable values by referring to the array name and 

index: 

 
<?php 

$cars[0]="Saab"; 

$cars[1]="Volvo"; 

$cars[2]="BMW"; 

$cars[3]="Toyota"; 

echo $cars[0] . " and " . $cars[1] . " are Swedish cars."; 

?> 

 
The code above will output: 

 
Saab and Volvo are Swedish cars. 

 

 

 
 



  

Associative Arrays 

An associative array, each ID key is associated with a value. 

 

When storing data about specific named values, a numerical array is not always the best way 

to do it. 

 

With associative arrays we can use the values as keys and assign values to them. 

 
Example 1 

 
In this example we use an array to assign ages to the different persons: 

 
$ages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34); 

 

Example 2 

 
This example is the same as example 1, but shows a different way of creating the array: 

 
$ages['Peter'] = "32"; 

$ages['Quagmire'] = "30"; 

$ages['Joe'] = "34"; 

 
The ID keys can be used in a script: 

 
<?php 

$ages['Peter'] = "32"; 

$ages['Quagmire'] = "30"; 

$ages['Joe'] = "34"; 

 
echo "Peter is " . $ages['Peter'] . " years old."; 

?> 

 
The code above will output: 

 
Peter is 32 years old. 

 
 

 
 

 

Multidimensional Arrays 

In a multidimensional array, each element in the main array can also be an array. And each 

element in the sub-array can be an array, and so on. 

 
Example 

 
In this example we create a multidimensional array, with automatically assigned ID keys: 



  

$families = array 

( 

"Griffin"=>arra 

y ( 

"Peter", 

"Lois", 

"Megan" 

), 

"Quagmire"=>array 

( 

"Glenn" 

), 

"Brown"=>arra 

y ( 

"Cleveland" 

, "Loretta", 

"Junior" 

) 

); 

 
The array above would look like this if written to the output: 

 
Arra 

y ( 

[Griffin] => 

Array ( 

[0] => Peter 

[1] => Lois 

[2] => Megan 

) 

[Quagmire] => 

Array ( 

[0] => Glenn 

) 

[Brown] => 

Array ( 

[0] => Cleveland 

[1] => Loretta 

[2] => Junior 

) 

) 
 

Example 2 

 
Lets try displaying a single value from the array above: 

 
echo "Is " . $families['Griffin'][2] 

. " a part of the Griffin family?"; 



  

The code above will output: 

 
Is Megan a part of the Griffin family? 

 

 
 

Loops execute a block of code a specified number of times, or while a specified condition is 

true. 
 
 

 

PHP Loops 

Often when you write code, you want the same block of code to run over and over again in a 

row. Instead of adding several almost equal lines in a script we can use loops to perform a 

task like this. 

 

In PHP, we have the following looping statements: 

 
 while - loops through a block of code while a specified condition is true 
 do...while - loops through a block of code once, and then repeats the loop as long as a 

specified condition is true 

 for - loops through a block of code a specified number of times 

 foreach - loops through a block of code for each element in an array 
 
 

 

The while Loop 

The while loop executes a block of code while a condition is true. 

 
Syntax 

while (condition) 

{ 

code to be executed; 

} 
 

Example 

 
The example below first sets a variable i to 1 ($i=1;). 

 

Then, the while loop will continue to run as long as i is less than, or equal to 5. i will increase 

by 1 each time the loop runs: 

 
<html> 

<body> 

 
<?php 

$i=1; 

while($i<=5 

) 

{ 



  

echo "The number is " . $i . "<br>"; 

$i++; 

} 

?> 

 
</body> 

</html> 

 
Output: 

 
The number is 1 

The number is 2 

The number is 3 

The number is 4 

The number is 5 

 
 

 
 

 

The do...while Statement 

The do...while statement will always execute the block of code once, it will then check the 

condition, and repeat the loop while the condition is true. 

 
Syntax 

do 

{ 

code to be executed; 

} 

while (condition); 
 

Example 

 
The example below first sets a variable i to 1 ($i=1;). 

 

Then, it starts the do...while loop. The loop will increment the variable i with 1, and then 

write some output. Then the condition is checked (is i less than, or equal to 5), and the loop 

will continue to run as long as i is less than, or equal to 5: 

 
<html> 

<body> 

 
<?php 

$i=1 

; do 

{ 

$i++; 

echo "The number is " . $i . "<br>"; 

} 



  

while ($i<=5); 

?> 

 
</body> 

</html> 

 
Output: 

 
The number is 2 

The number is 3 

The number is 4 

The number is 5 

The number is 6 

 

 

Loops execute a block of code a specified number of times, or while a specified condition is 

true. 
 
 

 

The for Loop 

The for loop is used when you know in advance how many times the script should run. 

 
Syntax 

for (init; condition; increment) 

{ 

code to be executed; 

} 

 
Parameters: 

 
 init: Mostly used to set a counter (but can be any code to be executed once at the beginning 

of the loop) 
 condition: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues. If 

it evaluates to FALSE, the loop ends. 

 increment: Mostly used to increment a counter (but can be any code to be executed at the 
end of the iteration) 

 

Note: The init and increment parameters above can be empty or have multiple expressions 

(separated by commas). 

 
Example 

 
The example below defines a loop that starts with i=1. The loop will continue to run as long 

as the variable i is less than, or equal to 5. The variable i will increase by 1 each time the loop 

runs: 

 
<html> 

<body> 



  

<?php 

for ($i=1; $i<=5; $i++) 

{ 

echo "The number is " . $i . "<br>"; 

} 

?> 

 
</body> 

</html> 

 
Output: 

 
The number is 1 

The number is 2 

The number is 3 

The number is 4 

The number is 5 

 

 

 
 

 

The foreach Loop 

The foreach loop is used to loop through arrays. 

 
Syntax 

foreach ($array as $value) 

{ 

code to be executed; 

} 

 
For every loop iteration, the value of the current array element is assigned to $value (and the 

array pointer is moved by one) - so on the next loop iteration, you'll be looking at the next 

array value. 

 
Example 

 
The following example demonstrates a loop that will print the values of the given array: 

 
<html> 

<body> 

 
<?php 

$x=array("one","two","three"); 

foreach ($x as $value) 

{ 

echo $value . "<br>"; 

} 



  

?> 

 
</body> 

</html> 

 
Output: 

 
one 

two 

three 

 

 

 

 
The real power of PHP comes from its functions. 

In PHP, there are more than 700 built-in functions. 

 

 

PHP Built-in Functions 

For a complete reference and examples of the built-in functions, please visit our PHP 

Reference. 
 
 

 

PHP Functions 

In this chapter we will show you how to create your own functions. 

 

To keep the script from being executed when the page loads, you can put it into a function. 

A function will be executed by a call to the function. 

You may call a function from anywhere within a page. 
 
 

 

Create a PHP Function 

A function will be executed by a call to the function. 

 
Syntax 

function functionName() 

{ 

code to be executed; 

} 

http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp


  

PHP function guidelines: 

 
 Give the function a name that reflects what the function does 

 The function name can start with a letter or underscore (not a number) 

 
Example 

 
A simple function that writes my name when it is called: 

 
<html> 

<body> 

 
<?php 

function writeName() 

{ 

echo "Kai Jim Refsnes"; 

} 

 
echo "My name is "; 

writeName(); 

?> 

 
</body> 

</html> 

 
Output: 

 
My name is Kai Jim Refsnes 

 

 

 
 

 

PHP Functions - Adding parameters 

To add more functionality to a function, we can add parameters. A parameter is just like a 

variable. 

 

Parameters are specified after the function name, inside the parentheses. 

 
Example 1 

 
The following example will write different first names, but equal last name: 

 
<html> 

<body> 

 
<?php 

function writeName($fname) 

{ 



  

echo $fname . " Refsnes.<br>"; 

} 

 
echo "My name is "; 

writeName("Kai Jim"); 

echo "My sister's name is "; 

writeName("Hege"); 

echo "My brother's name is "; 

writeName("Stale"); 

?> 

 
</body> 

</html> 

 
Output: 

 
My name is Kai Jim Refsnes. 

My sister's name is Hege Refsnes. 

My brother's name is Stale Refsnes. 

Example 2 

 
The following function has two parameters: 

 
<html> 

<body> 

 
<?php 

function writeName($fname,$punctuation) 

{ 

echo $fname . " Refsnes" . $punctuation . "<br>"; 

} 

 
echo "My name is "; 

writeName("Kai Jim","."); 

echo "My sister's name is "; 

writeName("Hege","!"); 

echo "My brother's name is "; 

writeName("Ståle","?"); 

?> 

 
</body> 

</html> 

 
Output: 

 
My name is Kai Jim Refsnes. 

My sister's name is Hege Refsnes! 

My brother's name is Ståle Refsnes? 



  

 

 

PHP Functions - Return values 

To let a function return a value, use the return statement. 

 
Example 

<html> 

<body> 

 
<?php 

function add($x,$y) 

{ 

$total=$x+$y 

; return 

$total; 

} 

 
echo "1 + 16 = " . add(1,16); 

?> 

 
</body> 

</html> 

 
Output: 

 
1 + 16 = 17 

 

 
 

The PHP $_GET and $_POST variables are used to retrieve information from forms, like 

user input. 
 
 

 

PHP Form Handling 

The most important thing to notice when dealing with HTML forms and PHP is that any form 

element in an HTML page will automatically be available to your PHP scripts. 

 
Example 

 
The example below contains an HTML form with two input fields and a submit button: 

 
<html> 

<body> 

 
<form action="welcome.php" method="post"> 

Name: <input type="text" name="fname"> 



  

Age: <input type="text" name="age"> 

<input type="submit"> 

</form> 

 
</body> 

</html> 

 
When a user fills out the form above and clicks on the submit button, the form data is sent to 

a PHP file, called "welcome.php": 

 

"welcome.php" looks like this: 

 
<html> 

<body> 

 
Welcome <?php echo $_POST["fname"]; 

?>!<br> You are <?php echo $_POST["age"]; ?> 

years old. 

 
</body> 

</html> 

 
Output could be something like this: 

 
Welcome John! 

You are 28 years old. 

 
The PHP $_GET and $_POST variables will be explained in the next chapters. 

 
 

 

Form Validation 

User input should be validated on the browser whenever possible (by client scripts). Browser 

validation is faster and reduces the server load. 

 

You should consider server validation if the user input will be inserted into a database. A 

good way to validate a form on the server is to post the form to itself, instead of jumping to a 

different page. The user will then get the error messages on the same page as the form. This 

makes it easier to discover the error. 

 

 
 

In PHP, the predefined $_GET variable is used to collect values in a form with 

method="get". 
 
 

 

The $_GET Variable 

The predefined $_GET variable is used to collect values in a form with method="get" 



  

Information sent from a form with the GET method is visible to everyone (it will be 

displayed in the browser's address bar) and has limits on the amount of information to send. 

 
Example 

<form action="welcome.php" method="get"> 

Name: <input type="text" name="fname"> 

Age: <input type="text" name="age"> 

<input type="submit"> 

</form> 

 
When the user clicks the "Submit" button, the URL sent to the server could look something 

like this: 

 
http://www.w3schools.com/welcome.php?fname=Peter&age=37 

 
The "welcome.php" file can now use the $_GET variable to collect form data (the names of 

the form fields will automatically be the keys in the $_GET array): 

 
Welcome <?php echo $_GET["fname"]; 

?>.<br> You are <?php echo $_GET["age"]; ?> 

years old! 

 

 

 
 

 

When to use method="get"? 

When using method="get" in HTML forms, all variable names and values are displayed in 

the URL. 

 

Note: This method should not be used when sending passwords or other sensitive 

information! 

 

However, because the variables are displayed in the URL, it is possible to bookmark the 

page. This can be useful in some cases. 

 

Note: The get method is not suitable for very large variable values. It should not be used with 
values exceeding 2000 characters. 

 

 

 

 

In PHP, the predefined $_POST variable is used to collect values in a form with 
method="post". 

 
 

 

The $_POST Variable 

http://www.w3schools.com/welcome.php?fname=Peter&amp%3Bage=37


  

The predefined $_POST variable is used to collect values from a form sent with 

method="post". 

 

Information sent from a form with the POST method is invisible to others and has no limits 

on the amount of information to send. 

 

Note: However, there is an 8 MB max size for the POST method, by default (can be changed 

by setting the post_max_size in the php.ini file). 

 
Example 

<form action="welcome.php" method="post"> 

Name: <input type="text" name="fname"> 

Age: <input type="text" name="age"> 

<input type="submit"> 

</form> 

 
When the user clicks the "Submit" button, the URL will look like this: 

 
http://www.w3schools.com/welcome.php 

 
The "welcome.php" file can now use the $_POST variable to collect form data (the names of 

the form fields will automatically be the keys in the $_POST array): 

 
Welcome <?php echo $_POST["fname"]; 

?>!<br> You are <?php echo $_POST["age"]; ?> 

years old. 

 

 
 
 

 

When to use method="post"? 

Information sent from a form with the POST method is invisible to others and has no limits 

on the amount of information to send. 

 

However, because the variables are not displayed in the URL, it is not possible to bookmark 

the page. 
 
 

 

The PHP $_REQUEST Variable 

The predefined $_REQUEST variable contains the contents of both $_GET, $_POST, and 

$_COOKIE. 

 

The $_REQUEST variable can be used to collect form data sent with both the GET and 

POST methods. 

 
Example 

Welcome <?php echo $_REQUEST["fname"]; 

?>!<br> You are <?php echo $_REQUEST["age"]; 

?> years old. 

http://www.w3schools.com/welcome.php


  

What is MySQL? 

 MySQL is a database server 

 MySQL is ideal for both small and large applications 

 MySQL supports standard SQL 

 MySQL compiles on a number of platforms 

 MySQL is free to download and use 

 

The data in MySQL is stored in database objects called tables. 

 

A table is a collection of related data entries and it consists of columns and rows. 

 

Databases are useful when storing information categorically. A company may have a 

database with the following tables: "Employees", "Products", "Customers" and "Orders". 
 
 

 

PHP + MySQL 

 PHP combined with MySQL are cross-platform (you can develop in Windows and 

serve on a Unix platform) 
 
 

 

Database Tables 

A database most often contains one or more tables. Each table is identified by a name (e.g. 

"Customers" or "Orders"). Tables contain records (rows) with data. 

 

Below is an example of a table called "Persons": 

 
LastName FirstName Address City 

Hansen Ola Timoteivn 10 Sandnes 
 

Svendson Tove Borgvn 23 Sandnes 

Pettersen Kari Storgt 20 Stavanger 

 
The table above contains three records (one for each person) and four columns (LastName, 

FirstName, Address, and City). 
 
 

 

 

 

 

 

Queries 

A query is a question or a request. 



  

With MySQL, we can query a database for specific information and have a recordset 

returned. 

 

Look at the following query: 

 

SELECT LastName FROM Persons 

 

The query above selects all the data in the "LastName" column from the "Persons" table, and 
will return a recordset like this: 

 
LastName 

Hansen 

Svendson 

Pettersen 

 

 

Download MySQL Database 

If you don't have a PHP server with a MySQL Database, you can download MySQL for free 

here: http://www.mysql.com/downloads/ 
 
 

 

Facts About MySQL Database 

One great thing about MySQL is that it can be scaled down to support embedded database 

applications. Perhaps it is because of this reputation that many people believe that MySQL 

can only handle small to medium-sized systems. 

 

The truth is that MySQL is the de-facto standard database for web sites that support huge 

volumes of both data and end users (like Friendster, Yahoo, Google). 

 

Look at http://www.mysql.com/customers/ for an overview of companies using MySQL. 
 

The free MySQL database is very often used with PHP. 
 
 

 

Create a Connection to a MySQL Database 

Before you can access data in a database, you must create a connection to the database. 

In PHP, this is done with the mysql_connect() function. 

Syntax 

mysql_connect(servername,username,password); 

http://www.mysql.com/downloads/
http://www.mysql.com/customers/


  

Parameter Description 

servername Optional. Specifies the server to connect to. Default value is "localhost:3306" 

username Optional. Specifies the username to log in with. Default value is the name of the 

user that owns the server process 

 
password Optional. Specifies the password to log in with. Default is "" 

 
 

Note: There are more available parameters, but the ones listed above are the most important. 
Visit our full PHP MySQL Reference for more details. 

 

Example 

 
In the following example we store the connection in a variable ($con) for later use in the 

script. The "die" part will be executed if the connection fails: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
// some code 

?> 
 

 

 
 

 

Closing a Connection 

The connection will be closed automatically when the script ends. To close the connection 

before, use the mysql_close() function: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

// some code 

mysql_close($con); 

?> 

http://www.w3schools.com/php/php_ref_mysql.asp


  

A database holds one or multiple tables. 
 
 

 

Create a Database 

The CREATE DATABASE statement is used to create a database in MySQL. 

 
Syntax 

CREATE DATABASE database_name 

 
 

To learn more about SQL, please visit our SQL tutorial. 
 

To get PHP to execute the statement above we must use the mysql_query() function. This 

function is used to send a query or command to a MySQL connection. 

 
Example 

 
The following example creates a database called "my_db": 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
if (mysql_query("CREATE DATABASE my_db",$con)) 

{ 

echo "Database created"; 

} 

else 

{ 

echo "Error creating database: " . mysql_error(); 

} 

 
mysql_close($con); 

?> 
 

 

 
 

 

Create a Table 

The CREATE TABLE statement is used to create a table in MySQL. 

http://www.w3schools.com/sql/default.asp


  

Syntax 

CREATE TABLE 

table_name ( 

column_name1 data_type, 

column_name2 data_type, 

column_name3 data_type, 

.... 

) 

 
To learn more about SQL, please visit our SQL tutorial. 

 

We must add the CREATE TABLE statement to the mysql_query() function to execute the 

command. 

 
Example 

 
The following example creates a table named "Persons", with three columns. The column 

names will be "FirstName", "LastName" and "Age": 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
// Create database 

if (mysql_query("CREATE DATABASE my_db",$con)) 

{ 

echo "Database created"; 

} 

else 

{ 

echo "Error creating database: " . mysql_error(); 

} 

 
// Create table 

mysql_select_db("my_db", $con); 

$sql = "CREATE TABLE 

Persons ( 

FirstName 

varchar(15), LastName 

varchar(15), Age int 

)"; 

 
// Execute query 

mysql_query($sql,$con); 

http://www.w3schools.com/sql/default.asp


  

mysql_close($con); 

?> 

 
Important: A database must be selected before a table can be created. The database is 

selected with the mysql_select_db() function. 

 

Note: When you create a database field of type varchar, you must specify the maximum 

length of the field, e.g. varchar(15). 

 

The data type specifies what type of data the column can hold. For a complete reference of all 

the data types available in MySQL, go to our complete Data Types reference. 
 
 

 

Primary Keys and Auto Increment Fields 

Each table should have a primary key field. 

 

A primary key is used to uniquely identify the rows in a table. Each primary key value must 

be unique within the table. Furthermore, the primary key field cannot be null because the 

database engine requires a value to locate the record. 

 

The following example sets the personID field as the primary key field. The primary key field 

is often an ID number, and is often used with the AUTO_INCREMENT setting. 

AUTO_INCREMENT automatically increases the value of the field by 1 each time a new 

record is added. To ensure that the primary key field cannot be null, we must add the NOT 

NULL setting to the field. 

 
Example 

$sql = "CREATE TABLE 

Persons ( 

personID int NOT NULL 

AUTO_INCREMENT, PRIMARY 

KEY(personID), 

FirstName 

varchar(15), LastName 

varchar(15), Age int 

)"; 

 
mysql_query($sql,$con); 

 

Insert Data Into a Database Table 

The INSERT INTO statement is used to add new records to a database table. 

 
Syntax 

 
It is possible to write the INSERT INTO statement in two forms. 

 
The first form doesn't specify the column names where the data will be inserted, only their 

values: 

http://www.w3schools.com/sql/sql_datatypes.asp


  

INSERT INTO table_name 

VALUES (value1, value2, value3,...) 

 

The second form specifies both the column names and the values to be inserted: 

 
INSERT INTO table_name (column1, column2, 

column3,...) VALUES (value1, value2, value3,...) 

 

To learn more about SQL, please visit our SQL tutorial. 
 

To get PHP to execute the statements above we must use the mysql_query() function. This 
function is used to send a query or command to a MySQL connection. 

 
Example 

 
In the previous chapter we created a table named "Persons", with three columns; "Firstname", 

"Lastname" and "Age". We will use the same table in this example. The following example 

adds two new records to the "Persons" table: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

 
mysql_query("INSERT INTO Persons (FirstName, LastName, 

Age) VALUES ('Peter', 'Griffin',35)"); 

 
mysql_query("INSERT INTO Persons (FirstName, LastName, 

Age) VALUES ('Glenn', 'Quagmire',33)"); 

 
mysql_close($con); 

?> 
 

 

 
 

 

Insert Data From a Form Into a Database 

Now we will create an HTML form that can be used to add new records to the "Persons" 

table. 

 

Here is the HTML form: 

http://www.w3schools.com/sql/default.asp


  

<html> 

<body> 

 
<form action="insert.php" method="post"> 

Firstname: <input type="text" name="firstname"> 

Lastname: <input type="text" name="lastname"> 

Age: <input type="text" name="age"> 

<input type="submit"> 

</form> 

 
</body> 

</html> 

 
When a user clicks the submit button in the HTML form in the example above, the form data 

is sent to "insert.php". 

 

The "insert.php" file connects to a database, and retrieves the values from the form with the 

PHP $_POST variables. 

 

Then, the mysql_query() function executes the INSERT INTO statement, and a new record 

will be added to the "Persons" table. 

 

Here is the "insert.php" page: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

 
$sql="INSERT INTO Persons (FirstName, LastName, 

Age) VALUES 

('$_POST[firstname]','$_POST[lastname]','$_POST[age]')"; 

 
if (!mysql_query($sql,$con)) 

{ 

die('Error: ' . mysql_error()); 

} 

echo "1 record added"; 

 
mysql_close($con); 

?> 

 

Select Data From a Database Table 

The SELECT statement is used to select data from a database. 



  

Syntax 

SELECT 

column_name(s) FROM 

table_name 

 

To learn more about SQL, please visit our SQL tutorial. 
 

To get PHP to execute the statement above we must use the mysql_query() function. This 

function is used to send a query or command to a MySQL connection. 

 
Example 

 
The following example selects all the data stored in the "Persons" table (The * character 

selects all the data in the table): 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

 
$result = mysql_query("SELECT * FROM 

Persons"); while($row = 

mysql_fetch_array($result)) 

{ 

echo $row['FirstName'] . " " . $row['LastName']; 

echo "<br />"; 

} 

 
mysql_close($con); 

?> 

 
The example above stores the data returned by the mysql_query() function in the $result 

variable. 

 

Next, we use the mysql_fetch_array() function to return the first row from the recordset as an 

array. Each call to mysql_fetch_array() returns the next row in the recordset. The while loop 

loops through all the records in the recordset. To print the value of each row, we use the PHP 

$row variable ($row['FirstName'] and $row['LastName']). 

The output of the code above will be: 

Peter Griffin 

Glenn Quagmire 

 
 

 
 

http://www.w3schools.com/sql/default.asp


  

Display the Result in an HTML Table 

The following example selects the same data as the example above, but will display the data 

in an HTML table: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

$result = mysql_query("SELECT * FROM 

Persons"); echo "<table border='1'> 

<tr> 

<th>Firstname</th> 

<th>Lastname</th> 

</tr>"; 

 
while($row = mysql_fetch_array($result)) 

{ 

echo "<tr>"; 

echo "<td>" . $row['FirstName'] . 

"</td>"; echo "<td>" . $row['LastName'] . 

"</td>"; echo "</tr>"; 

} 

echo "</table>"; 

 
mysql_close($con); 

?> 

 
The output of the code above will be: 

 
Firstnam 

e 

Lastnam 

e 

Glenn Quagmire 

Peter Griffin 

 

 

The WHERE clause 

The WHERE clause is used to extract only those records that fulfill a specified criterion. 



  

Syntax 

SELECT 

column_name(s) FROM 

table_name 

WHERE column_name operator value 

 
To learn more about SQL, please visit our SQL tutorial. 

 

To get PHP to execute the statement above we must use the mysql_query() function. This 

function is used to send a query or command to a MySQL connection. 

 
Example 

 
The following example selects all rows from the "Persons" table where "FirstName='Peter'": 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

 
$result = mysql_query("SELECT * FROM 

Persons WHERE FirstName='Peter'"); 

 
while($row = mysql_fetch_array($result)) 

{ 

echo $row['FirstName'] . " " . $row['LastName']; 

echo "<br>"; 

} 

?> 

 
The output of the code above will be: 

 
Peter Griffin 

 

The ORDER BY Keyword 

The ORDER BY keyword is used to sort the data in a recordset. 

 

The ORDER BY keyword sort the records in ascending order by default. 

 

If you want to sort the records in a descending order, you can use the DESC keyword. 

 
Syntax 

SELECT 

column_name(s) FROM 

table_name 

ORDER BY column_name(s) ASC|DESC 

http://www.w3schools.com/sql/default.asp


  

To learn more about SQL, please visit our SQL tutorial. 
 

Example 

 
The following example selects all the data stored in the "Persons" table, and sorts the result 

by the "Age" column: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

$result = mysql_query("SELECT * FROM Persons ORDER BY 

age"); while($row = mysql_fetch_array($result)) 

{ 

echo $row['FirstName']; 

echo " " . $row['LastName']; 

echo " " . $row['Age']; 

echo "<br>"; 

} 

 
mysql_close($con); 

?> 

 
The output of the code above will be: 

 
Glenn Quagmire 33 

Peter Griffin 35 
 

 
 
 

 

Order by Two Columns 

It is also possible to order by more than one column. When ordering by more than one 

column, the second column is only used if the values in the first column are equal: 

 
SELECT 

column_name(s) FROM 

table_name 

ORDER BY column1, column2 

 

Update Data In a Database 



  

The UPDATE statement is used to update existing records in a table. 

 
Syntax 

UPDATE table_name 

SET column1=value, 

column2=value2,... WHERE 

some_column=some_value 

 

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which 

record or records that should be updated. If you omit the WHERE clause, all records will be 

updated! 

 

To learn more about SQL, please visit our SQL tutorial. 
 

To get PHP to execute the statement above we must use the mysql_query() function. This 

function is used to send a query or command to a MySQL connection. 

 
Example 

 
Earlier in the tutorial we created a table named "Persons". Here is how it looks: 

 
FirstName LastName Age 

 
Peter Griffin 35 

 
Glenn Quagmire 33 

 
 

The following example updates some data in the "Persons" table: 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

mysql_select_db("my_db", $con); 

mysql_query("UPDATE Persons SET 

Age=36 

WHERE FirstName='Peter' AND LastName='Griffin'"); 

 
mysql_close($con); 

?> 

 
After the update, the "Persons" table will look like this: 

 
FirstName LastName Age 

http://www.w3schools.com/sql/default.asp


  

Peter Griffin 36 

Glenn Quagmire 33 

 
 

Delete Data In a Database 

The DELETE FROM statement is used to delete records from a database table. 

 
Syntax 

DELETE FROM table_name 

WHERE some_column = some_value 

 

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which 

record or records that should be deleted. If you omit the WHERE clause, all records will be 

deleted! 

 

To learn more about SQL, please visit our SQL tutorial. 
 

To get PHP to execute the statement above we must use the mysql_query() function. This 

function is used to send a query or command to a MySQL connection. 

 
Example 

 
Look at the following "Persons" table: 

 
FirstName LastName Age 

 
Peter Griffin 35 

 
Glenn Quagmire 33 

 
 

The following example deletes all the records in the "Persons" table where 

LastName='Griffin': 

 
<?php 

$con = mysql_connect("localhost","peter","abc123"); 

if (!$con) 

{ 

die('Could not connect: ' . mysql_error()); 

} 

 
mysql_select_db("my_db", $con); 

mysql_query("DELETE FROM Persons WHERE 

LastName='Griffin'"); mysql_close($con); 

?> 

 
After the deletion, the table will look like this: 

http://www.w3schools.com/sql/default.asp


  

FirstName LastName Age 

 
Glenn Quagmire 33 

 
 

Create an ODBC Connection 

With an ODBC connection, you can connect to any database, on any computer in your 

network, as long as an ODBC connection is available. 

 

Here is how to create an ODBC connection to a MS Access Database: 

 
1. Open the Administrative Tools icon in your Control Panel. 
2. Double-click on the Data Sources (ODBC) icon inside. 
3. Choose the System DSN tab. 
4. Click on Add in the System DSN tab. 
5. Select the Microsoft Access Driver. Click Finish. 
6. In the next screen, click Select to locate the database. 
7. Give the database a Data Source Name (DSN). 
8. Click OK. 

 

Note that this configuration has to be done on the computer where your web site is located. If 

you are running Internet Information Server (IIS) on your own computer, the instructions 

above will work, but if your web site is located on a remote server, you have to have physical 

access to that server, or ask your web host to to set up a DSN for you to use. 
 
 

 

Connecting to an ODBC 

The odbc_connect() function is used to connect to an ODBC data source. The function takes 

four parameters: the data source name, username, password, and an optional cursor type. 

 

The odbc_exec() function is used to execute an SQL statement. 

 
Example 

 
The following example creates a connection to a DSN called northwind, with no username 

and no password. It then creates an SQL and executes it: 

 
$conn=odbc_connect('northwind','',''); 

$sql="SELECT * FROM customers"; 

$rs=odbc_exec($conn,$sql); 
 

 

 
 

 

Retrieving Records 



  

The odbc_fetch_row() function is used to return records from the result-set. This function 

returns true if it is able to return rows, otherwise false. 

 

The function takes two parameters: the ODBC result identifier and an optional row number: 

 
odbc_fetch_row($rs) 

 

 

 
 

 

Retrieving Fields from a Record 

The odbc_result() function is used to read fields from a record. This function takes two 

parameters: the ODBC result identifier and a field number or name. 

 

The code line below returns the value of the first field from the record: 

 
$compname=odbc_result($rs,1); 

 
The code line below returns the value of a field called "CompanyName": 

 
$compname=odbc_result($rs,"CompanyName"); 

 

 

 
 

 

Closing an ODBC Connection 

The odbc_close() function is used to close an ODBC connection. 

 
odbc_close($conn); 

 

 
 
 

 

An ODBC Example 

The following example shows how to first create a database connection, then a result-set, and 

then display the data in an HTML table. 

 
<html> 

<body> 

 
<?php 

$conn=odbc_connect('northwind','',''); 

if (!$conn) 

{exit("Connection Failed: " . $conn);} 

$sql="SELECT * FROM customers"; 



  

$rs=odbc_exec($conn,$sql); 

if (!$rs) 

{exit("Error in 

SQL");} echo 

"<table><tr>"; 

echo "<th>Companyname</th>"; 

echo "<th>Contactname</th></tr>"; 

while (odbc_fetch_row($rs)) 

{ 

$compname=odbc_result($rs,"CompanyName"); 

$conname=odbc_result($rs,"ContactName"); 

echo "<tr><td>$compname</td>"; 

echo "<td>$conname</td></tr>"; 

} 

odbc_close($conn); 

echo "</table>"; 

?> 

 
</body> 

</html> 

















































































































































|''|'||||''|'''|||'|

IV B.Tech I Semester Regular/Supplementary Examinations, Jan/Feb - 2022 

WEB TECHNOLOGIES 
 (Computer Science and Engineering) 

Time: 3 hours    Max. Marks: 70 

Question paper consists of Part-A and Part-B 

Answer ALL sub questions from Part-A 

Answer any FOUR questions from Part-B 

***** 

PART–A (14 Marks) 

1. a) Define Cascading of a style sheet? [2] 

b) How does one access cookie in a java script? [2] 

c) How can you declare attributes in XML? Give an example. [2] 

d) How to create a text file in PHP? [2] 

e) What are the user defined functions in PERL? [3] 

f) How to create an array in RUBY? [3] 

PART–B (4x14 = 56 Marks) 

2. a) How can you create HTML documents with frames? Explain. [7] 

b) Create a HTML document that displays a table of basketball scores at national

games in which the team names have their respective team colors. The score of

the leading/winning team should appear larger and in a different font than the

losing team. Use CSS. [7] 

3. a) How to use Cookies and session for session tracking? Explain with an example [7] 

b) Write in brief about JSP tag extensions and libraries. [7] 

4. a) What is a ‘XML Parser’? Explain in detail how XML data is parsed with an

example. [7] 

b) Define client side programming. Explain briefly about AJAX. [7] 

5. a) Define operator. Explain different operators used in PHP. [7] 

b) Write a PHP program for a simple calculator. [7] 

6. a) Discuss in brief about the types of data structures supported in Perl. [7] 

b) Write a PERL program to implement UNIX ‘password’ program. [7] 

7. a) Describe in brief about multi dimensional arrays in Ruby. [7] 

b) Write a ruby script to display grades of a student using hashes. [7] 

Code No: R1641053 Set No. 1 R16 

1 of 1 



||''|'''|''|'|''''||

IV B.Tech I Semester Supplementary Examinations, July/Aug - 2021 

WEB TECHNOLOGIES 
 (Computer Science and Engineering) 

Time: 3 hours    Max. Marks: 70 

Question paper consists of Part-A and Part-B 

Answer ALL sub questions from Part-A 

Answer any FOUR questions from Part-B 

***** 

PART–A (14 Marks) 

1. a) Define the syntax of creating a list in HTML. [2] 

b) What are JSP Implicit Objects? [2] 

c) What is XML? List characteristic features of XML. [2] 

d) What is PHP? What are the common uses of PHP? [2] 

e) How are the cookies handled in PERL. [3] 

f) Write in brief about extend and include in Ruby. [3] 

PART–B (4x14 = 56 Marks) 

2. a) Discuss in brief about CSS box model. [7] 

b) Explain in brief about Conflict resolution in CSS. [7] 

3. a) Explain about object, methods and events in Java Scripts. [7] 

b) With an example program, explain form validation concept in JavaScript. [7] 

4. a) Collect the student’s details such as, register number, name, subject and marks

using forms and generate a DTD for this XML document. Display the collected 

information in the descending order of marks. Write XML source code for the 

above. [7] 

b) Explain about various types of XML parser. [7] 

5. a) How to execute a simple query in PHP? Illustrate. [7] 

b) Explain about various file operations on text files in PHP. [7] 

6. a) How can you handle the files in Perl? [7] 

b) Explain in brief about how to call and identify subroutine in perl with example. [7] 

7. a) Write a Ruby program that uses iterator to find out the length of a string. [7] 

b) Discuss in brief about the Rail concept in Ruby. [7] 

Code No: R1641053 Set No. 1 R16 

1 of 1 


	WEB TECHNOLOGIES
	ACADEMIC YEAR 2021-22
	III B.Tech.–II SEMESTER (R19)
	G.K.HAVILAH, Assistant Professor
	Course Objectives:
	Course Outcomes:
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	UNIT V
	Text Books:
	Reference Books:
	Why to Learn AngularJS?
	General Features
	Core Features
	Concepts
	Advantages of AngularJS
	Disadvantages of AngularJS
	AngularJS Directives
	AngularJS – Expressions
	Using numbers
	Using Strings
	Using Object
	Using Array
	Example
	testAngularJS.htm

	Output

	AngularJS Forms
	Input Controls
	Data-Binding
	Example
	Example (1)

	Checkbox
	Example

	Radiobuttons
	Example

	Selectbox
	Example

	An AngularJS Form Example
	Application Code
	Example Explained

	AngularJS Form ValidationAngularJS can validate input data.
	Required
	Example

	E-mail
	Example

	Form State and Input State
	Example

	CSS Classes
	Example
	Example (1)

	Custom Validation
	Example
	Example Explained:

	Validation Example
	Example Explained
	What is Angular JS Expressions?

	AngularJS Strings
	AngularJS Strings (1)
	Angular.JS Objects
	AngularJS Arrays
	What is Node.js
	Features of Node.js

	Node.js Process Model
	Traditional Web Server Model
	Node.js Process Model

	Node.js Module
	Node.js Module Types
	Node.js Core Modules
	Loading Core Modules


	Node.js Local Module
	Writing Simple Module
	Loading Local Module

	Export Module in Node.js
	Export Literals
	Export Object

	Node.js File System
	Reading File
	Writing File
	Open File
	Flags

	Delete File
	Important method of fs module

	Introduction to XML:
	XML Characteristics:
	XML Usage:
	XML features:

	XML document structure
	XML Declaration:
	Processing Instruction:
	Comments:
	Document Type Declaration(DTD):

	XML Elements
	Document Type Declaration (DTD) XML Schema languages:
	1. Document Type Declaration(DTD):
	1. Internal DTD:
	2. External DTD:
	3. Combining Internal and External DTD:

	DTD validation:
	Element Type Declaration:
	Attribute Declaration:
	Attribute types:

	Entity Declaration:
	General Entity Declaration:
	Parameter Entity Declaration:

	2. XML Schema:
	Limitaions of Document Type Declaration (DTD)
	Strengths of XML Schema(XSD)

	XSD Structure:
	XSD Validation:
	Element declaration:
	Declarting simple elements:
	Declarting complex elements:
	 Attribute element properties:
	 Order Indicators
	 Occurence Indicators
	 Group Indicators

	XML Scheme data types:
	XSD String Data Types:
	XSD Date & Time Data Types:
	XSD Numeric Data Types:
	XSD Miscalleneous Data Types
	Advantages

	2. XSLT Elements:
	3. XSLT templates:
	4. Selecting values:
	5. Varaibale and Parameters:
	6. Conditional Processing:
	6. Repetition:
	7. Creating nodes and Sequences:
	Creating element nodes:
	Create attribute node:
	Create text nodes:
	Creating document node:
	Creating processing instructions:
	7.5 Creating comments:

	8. Grouping nodes:
	9. Sorting nodes:
	10. Functions:
	11. Copying nodes:
	12. Numbering:
	Document Object Model (DOM):
	1. Core DOM:
	2. HTML DOM:
	3. XML DOM:

	Using XML processors:
	Difference between DOM and SAX:
	DOM interfaces:
	Common DOM methods:
	Steps to Use DOM parser:
	2. Create a DocumentBuilder
	3. Create a Document from a file or stream
	4. Extract the root element
	5. Examine attributes
	Example for using of DOM parser: class.xml
	ContentHandler Interface
	Attributes Interface
	 String getQName(int index)

	Integrating PHP and AJAX:-
	
	 (1)
	 (2)

	Web Technologies
	What You Should Already Know
	What is PHP?
	What is a PHP File?
	What Can PHP Do?
	Why PHP?
	What Do I Need?
	Use a Web Host With PHP Support
	Set Up PHP on Your Own PC
	Basic PHP Syntax
	Example
	Comments in PHP
	Example (1)
	Do You Remember Algebra From School?
	PHP Variables
	Creating (Declaring) PHP Variables
	PHP is a Loosely Typed Language
	PHP Variable Scope
	Local Scope
	Global Scope
	Static Scope
	Parameters
	String Variables in PHP
	The Concatenation Operator
	The strlen() function
	The strpos() function
	Arithmetic Operators
	Assignment Operators
	Assignment Same as... Description

	Incrementing/Decrementing Operators
	Operator Name Description

	Comparison Operators
	Array Operators
	Conditional Statements
	The if Statement
	The if...else Statement
	The if...elseif....else Statement
	The PHP Switch Statement
	What is an Array?
	Numeric Arrays
	Associative Arrays
	Multidimensional Arrays
	PHP Loops
	The while Loop
	The do...while Statement
	The for Loop
	The foreach Loop
	PHP Built-in Functions
	PHP Functions
	Create a PHP Function
	PHP Functions - Adding parameters
	PHP Functions - Return values
	PHP Form Handling
	Form Validation
	The $_GET Variable
	When to use method="get"?
	The $_POST Variable
	When to use method="post"?
	The PHP $_REQUEST Variable
	What is MySQL?
	PHP + MySQL
	Database Tables
	LastName FirstName Address City

	Queries
	Download MySQL Database
	Facts About MySQL Database
	Create a Connection to a MySQL Database
	Closing a Connection
	Create a Database
	Create a Table
	Primary Keys and Auto Increment Fields
	Insert Data Into a Database Table
	Insert Data From a Form Into a Database
	Select Data From a Database Table
	Display the Result in an HTML Table
	The WHERE clause
	The ORDER BY Keyword
	Order by Two Columns
	Update Data In a Database
	Delete Data In a Database
	Create an ODBC Connection
	Connecting to an ODBC
	Retrieving Records
	Retrieving Fields from a Record
	Closing an ODBC Connection
	An ODBC Example

