LECTURE NOTES

ON

WEB TECHNOLOGIES
ACADEMIC YEAR 2021-22

111 B.Tech.—Il SEMESTER (R19)

G.K.HAVILAH, Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

V S M COLLEGE OF ENGINEERING
RAMCHANDRAPURAM
E.G DISTRICT
533255

11 Year — Il Semester

W
o|-

[e)inv)

WEB TECHNOLOGIES

Course Objectives:
From the course the student will learn
e Translate user requirements into the overall architecture and implementation
of newsystems and Manage Project and coordinate with the Client
e Write backend code in PHP language and Writing optimized front end code
HTML andJavaScript
e Understand, create and debug database related queries and Create test code to
validate theapplications against client requirement
e Monitor the performance of web applications & infrastructure and
Troubleshooting webapplication with a fast and accurate a resolution

Course Outcomes:

¢ lllustrate the basic concepts of HTML and CSS & apply those concepts to
design staticweb pages

¢ Identify and understand various concepts related to dynamic web pages and
validate themusing JavaScript

e Qutline the concepts of Extensible markup language & AJAX

e Develop web Applications using Scripting Languages & Frameworks

e Create and deploy secure, usable database driven web applications using PHP and
RUBY

UNIT I

HTML.: Basic Syntax, Standard HTML Document Structure, Basic Text Markup, Html
styles, Elements, Attributes, Heading, Layouts, Html media, Iframes Images,
Hypertext Links, Lists, Tables, Forms, GET and POST method, HTML 5, Dynamic
HTML.

CSS: Cascading style sheets, Levels of Style Sheets, Style Specification Formats,
Selector Forms, The Box Model, Conflict Resolution, CSS3.

UNIT 1

Javascript - Introduction to Javascript, Objects, Primitives Operations and Expressions,
Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular
Expressions, Fundamentals of Angular JS and NODE JS Angular Java Script-
Introduction to Angular JS Expressions: ARRAY, Objects, Strings, Angular JS Form
Validation & Form Submission.

Node.js- Introduction, Advantages, Node.js Process Model, Node JS Modules, Node
JS File system, Node JS URL module, Node JS Events.

UNIT Il

Working with XML: Document type Definition (DTD), XML schemas, XSLT,
Document object model, Parsers - DOM and SAX.

AJAX A New Approach: Introduction to AJAX, Basics of AJAX, XML Http Request
Object, AJAX Ul tags, Integrating PHP and AJAX.

UNIT IV

PHP Programming: Introduction to PHP, Creating PHP script, Running PHP script.
Working with variables and constants: Using variables, Using constants, Data types,
Operators. Controlling program flow: Conditional statements, Control statements,
Arrays, functions.

UNIT V

Web Servers- 11IS (XAMPP, LAMP) and Tomcat Servers. Java Web Technologies-
Introduction toServlet, Life cycle of Servlet, Servlet methods, Java Server Pages.

Database connectivity — Servlets, JSP, PHP, Practice of SQL

Queries.Introduction to Mongo DB and JQuery.

Web development frameworks — Introduction to Ruby, Ruby Scripting, Ruby on rails —
Design, Implementation and Maintenance aspects.

Text Books:
1) Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
2) Web Technologies, 1st Edition 7th impression, Uttam K Roy, Oxford, 2012.
3) Pro Mean Stack Development, 1st Edition, ELad Elrom, Apress O’Reilly, 2016
4) Java Script & jQuery the missing manual, 2nd Edition, David sawyer
mcfarland, O’Reilly,2011.
5) Web Hosting for Dummies, 1st Edition, Peter Pollock, John Wiley & Sons, 2013.
6) RESTful web services, 1st Edition, Leonard Richardson, Ruby, O’Reilly, 2007.
Reference Books:
1) Ruby on Rails Up and Running, Lightning fast Web development, 1st
Edition, BruceTate, Curt Hibbs, Oreilly, 2006.
2) Programming Perl, 4th Edition, Tom Christiansen, Jonathan Orwant, O’Reilly, 2012.
3) Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX,
Black book, 1stEdition, Dream Tech, 20009.
4) An Introduction to Web Design, Programming, 1st Edition, Paul S Wang,
Sanda S Katila,Cengage Learning, 2003.

ECapLel/g/0z0z

vl €1/ e

A RPY AR T AT FAY AR

¢0:7l €L/8/020C

€0:¥L €1/8/020¢

2020/8/13 14:0

2020/8/13 14:

2020/8/13 14:04

2020/8/13 14:04

202078113 14

2020/8/135 1

2020/8/13 14:05

2020/8/13 14:0

2020/8/13 14:045

2020/8/13 14:

2020/8/13 14:06

2020/8/13 14

2020/8/13 14

20208 2SI AROR

2020/8/13 14:42

2020/8/13 14:42

2020/8/13 14:43

2020/8/13 14:44

2020/8/13 14:44

2020/8/13 14:44

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:45

2020/8/13 14:46

2020/8/13 14:46

2020/8/13 14:46

2020/8/13 14:46

2020/8/13 14:46

2020/8/13 14:47

2020/8/13 14:47

2020/8/13 14

2020/8/13 14:43

2020/8/13 14:43

2020/8/13 14

2020/8/13

2020/8/13 14:44

2020/8/13 14:

2020/8/13 14:44

2020/8/13 14:4

2020/8/13 14:47

2020/8/13 14:47

2020/8/13 14:47

Lyl €L/8/020C

8v:¥l €1/8/020C

S.n0| Expression]

pesoq‘pﬁon . .

e —— e

g P+ ’IF matehes any - Shing Con‘tqimng ONe. oY Thove Bt
o | ope Tt matches any shincj Omhining 710 Ov more P
B P? f+ matches any ch’m’ containing at mogt omt?1
4 | PN T mabghes any shing confaining & Seqience of
N B - |
; : =)
5 | PSY (1t makches ang Sking corkaining a Sequence of |
two or three p's
& :
6 | PAUY [Tt wakehes any ghring containing o Seqpuence
Of aHeast +wo Pt
T Pd Tt matches any Shing With P at the end of it-
l ' : : =
R o Tt matdnes any shing Lith p at the beginning
Of it ' ; |

Following ~ examples explain move about matching charackons.

[sate [Bxpression Desoiphon. _
it é‘c’i—:'z.A-;-‘zj' Tt matches any sting i?ok Containing any of
iy o S et thovaekess Yonging from _fq"-\hroq_gh 2 and
el A |
o P-p Tt matehes any Stﬁn% containing P, -followed
by any charatter | Thuin followed by anetner R
13- [A2 | makches any 'smn% containing exatty fug
chayackeys - : | ‘ :
4+ [Lb7(*)fbp[Ft matches ony Sting enclosed Litnin 2by
|ond 2o :
‘plhpy* [Tt malches onlj. shing containing a “p’ ollowed
By 200 or more instances of the Seguence'hp”

b

et S 1 8

8¥:vL €L/8/020¢

8¥:vlL €1L/8/020¢

6v:vL €L/8/020¢

6V:vL ELIBIOCOL

2020/8/13 14:49

2020/8/13 14:49

2020/8/13 14:50

20200 31534550

2020/8/13 14:50

202078713 14:50

2020/8/13 1

202078713 14:50

2020/8/13 14:5

0G:7L €1/8/020¢

OS Ll L L/BL0L0L

LG: 7L EL/8/020¢C

AngularJsS is a very powerful JavaScript Framework. It is used in Single Page
Application (SPA) projects. It extends HTML DOM with additional attributes and
makes it more responsive to user actions. AngularJS is open source, completely
free, and used by thousands of developers around the world. It is licensed under the
Apache license version 2.0.

Why to Learn AngularJS?

AngularJS is an open-source web application framework. It was originally
developed in 2009 by Misko Hevery and Adam Abrons. It is now maintained by
Google. Its latest version is 1.2.21.

« AngularJS is a efficient framework that can create Rich Internet
Applications (RIA).

« AngularJS provides developers an options to write client side applications
using JavaScript in a clean Model View Controller (MVC) way.

« Applications written in AngularJS are cross-browser compliant. AngularJS
automatically handles JavaScript code suitable for each browser.

« Angular]JS is open source, completely free, and used by thousands of
developers around the world. It is licensed under the Apache license version
2.0.

Overall, AngularJS is a framework to build large scale, high-performance, and
easyto-maintain web applications.

AngularJS is an open-source web application framework. It was originally
developed in 2009 by Misko Hevery and Adam Abrons. It is now maintained by
Google. Its latest version is 1.2.21.

General Features

The general features of Angular]S are as follows —

« AngularJS is a efficient framework that can create Rich Internet
Applications (RIA).

« Angular]S provides developers an options to write client side applications
using JavaScript in a clean Model View Controller (MVC) way.

« Applications written in AngularJS are cross-browser compliant. AngularJS

automatically handles JavaScript code suitable for each browser.

« Angular]S is open source, completely free, and used by thousands of

developers around the world. It is licensed under the Apache license version
2.0.

Overall, AngularJS is a framework to build large scale, high-performance, and
easyto-maintain web applications.

Core Features

The core features of AngularJS are as follows —

Data-binding — It is the automatic synchronization of data between model
and view components.

Scope — These are objects that refer to the model. They act as a glue
between controller and view.

Controller — These are JavaScript functions bound to a particular scope.

Services — AngularJS comes with several built-in services such as $http to
make a XMLHttpRequests. These are singleton objects which are
instantiated only once in app.

Filters — These select a subset of items from an array and returns a new
array.

Directives — Directives are markers on DOM elements such as elements,
attributes, css, and more. These can be used to create custom HTML tags
that serve as new, custom widgets. AngularJS has built-in directives such as
ngBind, ngModel, etc.

Templates — These are the rendered view with information from the
controller and model. These can be a single file (such as index.html) or
multiple views in one page using partials.

Routing — It is concept of switching views.

Model View Whatever — MVW is a design pattern for dividing an
application into different parts called Model, View, and Controller, each
with distinct responsibilities. AngularJS does not implement MVC in the
traditional sense, but rather something closer to MVVM (Model-View-
ViewModel). The Angular JS team refers it humorously as Model View
Whatever.

Deep Linking — Deep linking allows to encode the state of application in
the URL so that it can be bookmarked. The application can then be restored
from the URL to the same state.

Dependency Injection — AngularJS has a built-in dependency injection
subsystem that helps the developer to create, understand, and test the
applications easily.

Concepts

The following diagram depicts some important parts of AngularJS which we will
discuss in detail in the subsequent chapters.

Advantages of AngularJS

The advantages of AngularJS are —

It provides the capability to create Single Page Application in a very clean
and maintainable way.

It provides data binding capability to HTML. Thus, it gives user a rich and
responsive experience.

AngularJS code is unit testable.

AngularJS uses dependency injection and make use of separation of
concerns.

AngularJS provides reusable components.

With AngularJS, the developers can achieve more functionality with short
code.

In Angular]S, views are pure html pages, and controllers written in
JavaScript do the business processing.

On the top of everything, AngularJS applications can run on all major browsers
and smart phones, including Android and iOS based phones/tablets.

Disadvantages of AngularJS

Though Angular]S comes with a lot of merits, here are some points of concern —

o Not Secure — Being JavaScript only framework, application written in
AngularJS are not safe. Server side authentication and authorization is must
to keep an application secure.

« Not degradable — If the user of your application disables JavaScript, then
nothing would be visible, except the basic page.

AngularJS Directives

The Angular]S framework can be divided into three major parts —

o Ng-app — This directive defines and links an Angular]JS application to
HTML.

« Nng-model — This directive binds the values of AngularJS application data to
HTML input controls.

« Nng-bind — This directive binds the Angular]S application data to HTML
tags.

AngularJS — Expressions

Expressions are used to bind application data to HTML. Expressions are written
inside double curly braces such as in {{ expression}}. Expressions behave similar
to ngbind directives. AngularJS expressions are pure JavaScript expressions and
output the data where they are used.

Using numbers

<p>Expense on Books : {{cost * quantity}} Rs</p>

Using Strings

<p>Hello {{student.firstname + " " + student.lastname}}!</p>
Using Object

<p>Roll No: {{student.rollno}}</p>

Using Array

<p>Marks(Math): {{marks[3]}}</p>

Example

The following example shows the use of all the above-mentioned expressions —

testAngularJS.htm

<html>
<head>
<title>AngularJS Expressions</title>
</head>

<body>
<h1>Sample Application</h1>
<div ng-app = """ ng-init = "quantity = 1;cost = 30;
student = {firstname:'Mahesh',lastname:'Parashar’,rollno:101};
marks = [80,90,75,73,60]">
<p>Hello {{student.firstname + " " + student.lastname}}!</p>
<p>Expense on Books : {{cost * quantity}} Rs</p>
<p>Roll No: {{student.rollno}}</p>
<p>Marks(Math): {{marks[3]}}</p>
</div>

<script src =
"https://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js">
</script>

</body>
</html>

Output

Open the file testAngularJS.htm in a web browser and see the result.

AngularJS Forms

Forms in AngularJS provides data-binding and validation of input controls.

Input Controls
Input controls are the HTML input elements:

« input elements

« select elements

« button elements

. textarea elements

Data-Binding
Input controls provides data-binding by using the ng-model directive.

<input type="text" ng-model="firstname">

The application does now have a property named firstname.
The ng-model directive binds the input controller to the rest of your application.
The property firstname, can be referred to in a controller:

Example

<script>

var app = angular.module('myApp’, []);

app.controller(‘formCtrl", function($scope) {
$scope.firstname = "John";

b,

</script>
Example

<form>
First Name: <input type="text" ng-model="firstname">
</form>

<h1>You entered: {{firstname}}</h1>

Checkbox

A checkbox has the value true or false. Apply the ng-model directive to a
checkbox, and use its value in your application.

Example

Show the header if the checkbox is checked:

<form>

Check to show a header:

<input type="checkbox" ng-model="myVar">
</form>

<hl ng-show="myVar">My Header</h1l

Radiobuttons
Bind radio buttons to your application with the ng-model directive.

Radio buttons with the same ng-model can have different values, but only the
selected one will be used.

Example

Display some text, based on the value of the selected radio button:

<form>
Pick a topic:
<input type="radio" ng-model="myVar" value="dogs">Dogs
<input type="radio" ng-model="myVar" value="tuts">Tutorials

<input type="radio" ng-model="myVar" value="cars">Cars
</form>

Selectbox
Bind select boxes to your application with the ng-model directive.

The property defined in the ng-model attribute will have the value of the selected
option in the selectbox.

Example

Display some text, based on the value of the selected option:

<form>
Select a topic:
<select ng-model="myVar">
<option value="">
<option value="dogs">Dogs
<option value="tuts">Tutorials
<option value="cars">Cars
</select>
</form>

An AngularJS Form Example

First Name:

—

Last Name:

—

RESET

form = {"firstName":"John","lastName":"Doe"}

master = {"firstName":"John","lastName":"Doe"}

Application Code

<div ng-app="myApp" ng-controller="formCtrl">
<form novalidate>
First Name:

<input type="text" ng-model="user.firstName">

Last Name:

<input type="text" ng-model="user.lastName">

<putton ng-click="reset()">RESET</button>
</form>
<p>form = {{user}}</p>
<p>master = {{master}}</p>
</div>

<script>
var app = angular.module('myApp’, []);
app.controller(‘formCtrl’, function($scope) {
$scope.master = {firstName: "John", lastName: "Doe"};
$scope.reset = function() {
$scope.user = angular.copy($scope.master);
3
$scope.reset();

i

</script>

Example Explained

The ng-app directive defines the AngularJS application.

The ng-controller directive defines the application controller.

The ng-model directive binds two input elements to the user object in the model.

The formCtrl controller sets initial values to the master object, and defines
the reset() method.

The reset() method sets the user object equal to the master object.
The ng-click directive invokes the reset() method, only if the button is clicked.

The novalidate attribute is not needed for this application, but normally you will
use it in AngularJS forms, to override standard HTMLS5 validation

AngularJS Form Validation

AngularJS can validate input data.

Form Validation

AngularJS offers client-side form validation.

AngularJS monitors the state of the form and input fields (input, textarea, select),
and lets you notify the user about the current state.

AngularJS also holds information about whether they have been touched, or
modified, or not.

You can use standard HTMLS5 attributes to validate input, or you can make your
own validation functions.

Client-side validation cannot alone secure user input. Server side validation is also
necessary.

Required
Use the HTML5 attribute required to specify that the input field must be filled out:
Example

The input field is required:

<form name="myForm">
<input name="mylInput" ng-model="mylnput" required>
</form>

<p>The input's valid state is:</p>
<h1>{{myForm.mylnput.$valid}}</h1>

E-mail
Use the HTML5 type email to specify that the value must be an e-mail:
Example

The input field has to be an e-mail:

<form name="myForm">
<input name="mylInput" ng-model="mylnput" type="email">
</form>

<p>The input's valid state is:</p>
<h1>{{myForm.mylnput.$valid}}</h1>

Form State and Input State
AngularJS is constantly updating the state of both the form and the input fields.
Input fields have the following states:

« $untouched The field has not been touched yet
« $touched The field has been touched

$pristine The field has not been modified yet
$dirty The field has been modified

$invalid The field content is not valid

$valid The field content is valid

They are all properties of the input field, and are either true or false.
Forms have the following states:

« S$pristine No fields have been modified yet
$dirty One or more have been modified
$invalid The form content is not valid
$valid The form content is valid
$submitted The form is submitted

They are all properties of the form, and are either true or false.

You can use these states to show meaningful messages to the user. Example, if a
field is required, and the user leaves it blank, you should give the user a warning:

Example

Show an error message if the field has been touched AND is empty:

<input name="myName" ng-model="myName" required>
<span ng-show="myForm.myName.$touched &&
myForm.myName.$invalid">The name is required.

CSS Classes
AngularJS adds CSS classes to forms and input fields depending on their states.
The following classes are added to, or removed from, input fields:

« ng-untouched The field has not been touched yet
« ng-touched The field has been touched
« ng-pristine The field has not been modified yet

ng-dirty The field has been modified

ng-valid The field content is valid

ng-invalid The field content is not valid

ng-valid-key One key for each validation. Example: ng-valid-required, useful
when there are more than one thing that must be validated

ng-invalid-key Example: ng-invalid-required

The following classes are added to, or removed from, forms:

ng-pristine No fields has not been modified yet

ng-dirty One or more fields has been modified

ng-valid The form content is valid

ng-invalid The form content is not valid

ng-valid-key One key for each validation. Example: ng-valid-required, useful
when there are more than one thing that must be validated

ng-invalid-key Example: ng-invalid-required

The classes are removed if the value they represent is false.

Add styles for these classes to give your application a better and more intuitive
user interface.

Example

Apply styles, using standard CSS:

<style>

input.ng-invalid {
background-color: pink;

¥

input.ng-valid {
background-color: lightgreen;

¥

</style>

Forms can also be styled:

Example

Apply styles for unmodified (pristine) forms, and for modified forms:
<style>

form.ng-pristine {
background-color: lightblue;

¥
form.ng-dirty {

background-color: pink;

}

</style>

Custom Validation

To create your own validation function is a bit more tricky; You have to add a new
directive to your application, and deal with the validation inside a function with
certain specified arguments.

Example

Create your own directive, containing a custom validation function, and refer to it
by using my-directive.

The field will only be valid if the value contains the character "e":

<form name="myForm">
<input name="mylnput" ng-model="mylnput" required my-directive>
</form>

<script>

var app = angular.module('myApp’, [1);
app.directive('myDirective’, function() {
return {
require: 'ngModel’,
link: function(scope, element, attr, mCtrl) {
function myValidation(value) {
It (value.indexOf("e") > -1) {
mCitrl.$setValidity('charE', true);

}else {
mCtrl.$setValidity(‘charE', false);
}
return value;
}
mCtrl.$parsers.push(myValidation);
}
Y
b
</script>

Example Explained:

In HTML, the new directive will be referred to by using the attribute my-directive.
In the JavaScript we start by adding a new directive named myDirective.

Remember, when naming a directive, you must use a camel case
name, myDirective, but when invoking it, you must use - separated name, my-
directive.

Then, return an object where you specify that we require ngModel, which is the
ngModelController.

Make a linking function which takes some arguments, where the fourth
argument, mcCtrl, is the ngModelController,

Then specify a function, in this case named my\Validation, which takes one
argument, this argument is the value of the input element.

Test if the value contains the letter "e", and set the validity of the model controller
to either true or false.

At last, mCtrl.$parsers.push(myValidation); will add the my\Validation function to
an array of other functions, which will be executed every time the input value
change

Validation Example

<IDOCTYPE html>

<htmI>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js">
</script>

<body>

<h2>Validation Example</h2>

<form ng-app="myApp" ng-controller="validateCtrl"
name="myForm" novalidate>

<p>Username:

<input type="text" name="user" ng-model="user" required>
<span style="color:red" ng-show="myForm.user.$dirty &&
myForm.user.$invalid">
Username is required.

</p>

<p>Email:

<input type="email" name="email" ng-model="email" required>

<span style="color:red" ng-show="myForm.email.$dirty &&

myForm.email. $invalid">
Email is required.
Invalid email address.

</p>

<p>
<input type="submit"
ng-disabled="myForm.user.$dirty && myForm.user.$invalid ||
myForm.email.$dirty && myForm.email.$invalid">

</p>

</form>

<script>
var app = angular.module('myApp’, []);
app.controller(‘validateCtrl', function($scope) {
$scope.user = 'John Doe’;
$scope.email = 'john.doe@gmail.com’;

b,

</script>

</body>
</html>

Example Explained
The AngularJS directive ng-model binds the input elements to the model.
The model object has two properties: user and email.

Because of ng-show, the spans with color:red are displayed only when user or
email is $dirty and $invalid.

What is Angular JS Expressions?

Expressions are variables which were defined in the double braces {{ }}. They are
very commonly used within Angular JS, and you would see them in our previous
tutorials.

In this tutorial, you will learn-

« Explain Angular.js Expressions with example
« AnqularJS Numbers

« Anqular]JS Strings

« AngularJS Objects

« AngularJS Arrays

AngularJS Strings

Expressions can be used to work with strings as well. Let’s look at an example of
Angular JS expressions with strings.

In this example, we are going to define 2 strings of “firstName” and “lastName”
and display them using expressions accordingly.

ng—ini’r ’rag 1o
inifialize s'rring

variables

variables names

being displawjed

https://www.guru99.com/angularjs-expressions.html#1
https://www.guru99.com/angularjs-expressions.html#2
https://www.guru99.com/angularjs-expressions.html#3
https://www.guru99.com/angularjs-expressions.html#4
https://www.guru99.com/angularjs-expressions.html#5

<IDOCTYPE html>

<html>

<head>
<meta chrset="UTF 8">
<title>Event Registration</title>

</head>
<body>

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script>
<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script>

<h1> Guru99 Global Event</h1>
<div ng-app=""" ng-init="firstName='Guru';lastName='99"">

First Name : {{firstName}}

last Name : {{lastName}}

</div>

</body>
</html>

AngularJS Strings

Expressions can be used to work with strings as well. Let’s look at an example of
Angular JS expressions with strings.

In this example, we are going to define 2 strings of “firstName” and “lastName”
and display them using expressions accordingly.

n@—inir fag 1o
inifiaize string

variables

Variaoles names
being displaused.

<IDOCTYPE html>

<html>

<head>
<meta chrset="UTF 8">
<title>Event Registration</title>

</head>
<body>

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script>
<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script>

<h1> Guru99 Global Event</h1>

<div ng-app=""" ng-init="firstName="Guru';lastName="99"">

First Name : {{firstName}}

last Name : {{lastName}}

</div>
</body>

</html>
Code Explanation:

1. The ng-init directive is used define the variables firstName with the value
“Guru” and the variable lastName with the value of “99”.

2. We are then using expressions of {{firstName}} and {{lastName}} to
access the value of these variables and display them in the view accordingly.

If the code is executed successfully, the following Output will be shown when you
run your code in the browser.

Output:

W Event Registration x
= C a

Guru99 Global Event

First Name : Guru
Last Name : 99

From the output, it can be clearly seen that the values of firstName and lastName
are displayed on the screen.

Angular.JS Objects
Expressions can be used to work with JavaScript objects as well.

Let’s look at an example of Angular.JS expressions with javascript objects. A
javascript object consists of a name-value pair.

Below is an example of the syntax of a javascript object.
Syntax:

var car = {type:"Ford", model:"Explorer", color:"White"};

https://www.guru99.com/interactive-javascript-tutorials.html

In this example, we are going to define one object as a person object which will
have 2 key value pairs of “firstName” and “lastName”.

Creating an ooject
(S variavle with 2

kew Vedve pair's

Accessing each
Vadve of the ooject
parson Via if's key
Vadve pairs

<IDOCTYPE html>

<html>

<head>
<meta chrset="UTF 8">
<title>Event Registration</title>

</head>
<body>

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script>
<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script>

<h1> Guru99 Global Event</h1>

<div ng-app=""' ng-init="person={firstName:'Guru',lastName:'99'}">

First Name : {{person.firstName}}

Last Name : {{person.lastName}}

</div>

</body>
</html>
Code Explanation:

1. The ng-init directive is used to define the object person which in turn has

key value pairs of firstName with the value “Guru” and the variable
lastName with the value of “99”.

We are then using expressions of {{person.firstName}} and
{{person.secondName}} to access the value of these variables and display
them in the view accordingly. Since the actual member variables are part of
the object person, they have to access it with the dot (.) notation to access
their actual value.

If the code is executed successfully, the following Output will be shown when you
run your code in the browser.

Output:

¥ Event Registration x
= CcC q

Guru99 Global Event

First Name : Guru
Last Name : 99

From the output,

It can be clearly seen that the values of “firstName” and “secondName” are
displayed on the screen.

AngularJS Arrays

Expressions can be used to work with arrays as well. Let’s look at an example of
Angular JS expressions with arrays.

In this example, we are going to define an array which is going to hold the marks
of a student in 3 subjects. In the view, we will display the value of these marks
accordingly.

|niﬁaneing an
oy vsing The

ng-init directive

. Accessing each
™~ aryou) Vodve

<IDOCTYPE html>
<html>
<head>
<meta chrset="UTF 8">
<title>Event Registration</title>
</head>
<body>

<script src="https://code.angularjs.org/1.6.9/angular-route.js"></script>
<script src="https://code.angularjs.org/1.6.9/angular.min.js"></script>

<h1> Guru99 Global Event</h1>
<div ng-app="" ng-init="marks=[1,15,19]">

Student Marks

Subjectl : {{marks[0] }}

Subject2 : {{marks[1] }}

Subject3 : {{marks[2] }}

</div>

</body>
</html>
Code Explanation:

1. The ng-init directive is used define the array with the name “marks” with 3
values of 1, 15 and 19.

2. We are then using expressions of marks [index] to access each element of
the array.

If the code is executed successfully, the following Output will be shown when you
run your code in the browser.

Output:

¥ Event Registration x
€ > C q

Guru99 Global Event

Student Marks
Subject1 : 1
Subject2 : 15
Subject3 : 19

From the output, it can be clearly seen that the marks being displayed, that are
defined in the array.

1.

NODEJS

Node.js tutorial provides basic and advanced concepts of Node.js. Our Node.js
tutorial is designed for beginners and professionals both.

Node.js is a cross-platform environment and library for running JavaScript
applications which is used to create networking and server-side applications.

Our Node.js tutorial includes all topics of Node.js such as Node.js installation on
windows and linux, REPL, package manager, callbacks, event loop, os, path, query
string, cryptography, debugger, URL, DNS, Net, UDP, process, child processes,
buffers, streams, file systems, global objects, web modules etc. There are also
given Node.js interview questions to help you better understand the Node.js
technology.

What is Node.js

Node.js is a cross-platform runtime environment and library for running JavaScript
applications outside the browser. It is used for creating server-side and networking
web applications. It is open source and free to use.

Many of the basic modules of Node.js are written in JavaScript. Node.js is mostly
used to run real-time server applications.

The definition given by its official documentation is as follows:

?Node.js is a platform built on Chrome's JavaScript runtime for easily building fast
and scalable network applications. Node.js uses an event-driven, non-blocking 1/0
model that makes it lightweight and efficient, perfect for data-intensive real-time
applications that run across distributed devices.?

Node.js also provides a rich library of various JavaScript modules to simplify the
development of web applications.

Node.js = Runtime Environment + JavaScript Library

Different parts of Node.js

The following diagram specifies some important parts of Node.js:

Buffer Modules Debugger

Streaming Console
DNS Cluster
Domain Add-ons
Global Callback
Met Error Handling Crypto

Features of Node.js

Following is a list of some important features of Node.js that makes it the first
choice of software architects.

1. Extremely fast: Node.js is built on Google Chrome's V8 JavaScript Engine,

so its library is very fast in code execution.

2. 1/0O is Asynchronous and Event Driven: All APIs of Node.js library are
asynchronous i.e. non-blocking. So a Node.js based server never waits for an
API to return data. The server moves to the next API after calling it and a
notification mechanism of Events of Node.js helps the server to get a

response from the previous API call. It is also a reason that it is very fast.

3. Single threaded: Node.js follows a single threaded model with event
looping.
4. Highly Scalable: Node.js is highly scalable because event mechanism helps

the server to respond in a non-blocking way.

5. No buffering: Node.js cuts down the overall processing time while
uploading audio and video files. Node.js applications never buffer any data.

These applications simply output the data in chunks.

6. Open source: Node.js has an open source community which has produced
many excellent modules to add additional capabilities to Node.js

applications.

7. License: Node.js is released under the MIT license.

_Node.js Process Model

In this section, we will learn about the Node.js process model and understand
why we should use Node.js.

Traditional Web Server Model

In the traditional web server model, each request is handled by a dedicated
thread from the thread pool. If no thread is available in the thread pool at any
point of time then the request waits till the next available thread. Dedicated
thread executes a particular request and does not return to thread pool until it
completes the execution and returns a response.

Thread
Pool

DThread 1 executes request 1
|
| . Thread 2 executes request 2
QThread 3 executes request 3

Web Server Dedicated Thread
executes request

i =1

Traditional Web Server Model

Node.js Process Model

Node.js processes user requests differently when compared to a traditional web
server model. Node.js runs in a single process and the application code runs in a
single thread and thereby needs less resources than other platforms. All the user
requests to your web application will be handled by a single thread and all the
I/0 work or long running job is performed asynchronously for a particular
request. So, this single thread doesn't have to wait for the request to complete
and is free to handle the next request. When asynchronous 1/0 work completes
then it processes the request further and sends the response.

An event loop is constantly watching for the events to be raised for an
asynchronous job and executing callback function when the job completes.
Internally, Node.js uses libev for the event loop which in turn uses internal C++
thread pool to provide asynchronous 1/0.

The following figure illustrates asynchronous web server model using Node.js.

https://www.tutorialsteacher.com/Content/images/nodejs/traditional-web-server-model.png
https://www.tutorialsteacher.com/Content/images/nodejs/traditional-web-server-model.png
http://software.schmorp.de/pkg/libev.html

Thread is free
to serve another request

Single Thread -~

-~ Start async job
Async jobs run on
worker thread

i =
< r

Reguest 1

Request 2

Response

" Async job complete
Event Loop Internal C++ thread pool

Response

Node.js Process Model

Node.js process model increases the performance and scalability with a few
caveats. Node.js is not fit for an application which performs CPU-intensive
operations like image processing or other heavy computation work because it
takes time to process a request and thereby blocks the single thread.

Node.js Module

Module in Node.js is a simple or complex functionality organized in single or
multiple JavaScript files which can be reused throughout the Node.js application.

Each module in Node.js has its own context, so it cannot interfere with other
modules or pollute global scope. Also, each module can be placed in a separate
.Js file under a separate folder.

Node.js implements CommonJS modules standard. CommonJS is a group of
volunteers who define JavaScript standards for web server, desktop, and console
application.

Node.js Module Types

https://www.tutorialsteacher.com/Content/images/nodejs/nodejs-process-model.png
https://www.tutorialsteacher.com/Content/images/nodejs/nodejs-process-model.png
http://requirejs.org/docs/commonjs.html

Node.js includes three types of modules:

1. Core Modules
2. Local Modules
3. Third Party Modules

Node.js Core Modules

Node.js is a light weight framework. The core modules include bare minimum
functionalities of Node.js. These core modules are compiled into its binary
distribution and load automatically when Node.js process starts. However, you
need to import the core module first in order to use it in your application.

The following table lists some of the important core modules in Node.js.

http http module includes classes, methods and events to create Node.js http server.
url url module includes methods for URL resolution and parsing.

querystring querystring module includes methods to deal with query string.

path path module includes methods to deal with file paths.

fs fs module includes classes, methods, and events to work with file 1/0.

util util module includes utility functions useful for programmers.

Loading Core Modules

In order to use Node.js core or NPM modules, you first need to import it using
require() function as shown below.

var module = require('module_name");

As per above syntax, specify the module name in the require() function. The
require() function will return an object, function, property or any other
JavaScript type, depending on what the specified module returns.

https://nodejs.org/api/http.html
https://nodejs.org/api/url.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/path.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/util.html

The following example demonstrates how to use Node.js http module to create a
web server.

Example: Load and Use Core http Module

Copy

var http = require('http’);

var server = http.createServer(function(req, res){

/lwrite code here

b
server.listen(5000);

In the above example, require() function returns an object because http module
returns its functionality as an object, you can then use its properties and methods
using dot notation e.g. http.createServer().

Node.js Local Module

Local modules are modules created locally in your Node.js application. These
modules include different functionalities of your application in separate files and
folders. You can also package it and distribute it via NPM, so that Node.js
community can use it. For example, if you need to connect to MongoDB and
fetch data then you can create a module for it, which can be reused in your
application.

Writing Simple Module

Let's write simple logging module which logs the information, warning or error
to the console.

In Node.js, module should be placed in a separate JavaScript file. So, create a
Log.js file and write the following code in it.

Log.js

Copy

var log = {

info: function (info) {
console.log('Info: ' + info);

3

warning:function (warning) {
console.log('Warning: ' + warning);

3

error:function (error) {
console.log('Error: ' + error);

}

¥

module.exports = log

In the above example of logging module, we have created an object with three
functions - info(), warning() and error(). At the end, we have assigned this object
to module.exports. The module.exports in the above example exposes a log
object as a module.

The module.exports is a special object which is included in every JS file in the
Node.js application by default. Use module.exports or exports to expose a
function, object or variable as a module in Node.js.

Now, let's see how to use the above logging module in our application.
Loading Local Module

To use local modules in your application, you need to load it using require()
function in the same way as core module. However, you need to specify the path
of JavaScript file of the module.

The following example demonstrates how to use the above logging module
contained in Log.js.

app.Js
Copy
var myLogModule = require('./Log.js");

myLogModule.info('Node.js started');

In the above example, app.js is using log module. First, it loads the logging
module using require() function and specified path where logging module is
stored. Logging module is contained in Log.js file in the root folder. So, we have
specified the path './Log.js" in the require() function. The "." denotes a root folder.

The require() function returns a log object because logging module exposes an
object in Log.js using module.exports. So now you can use logging module as an
object and call any of its function using dot notation e.g myLogModule.info() or
myLogModule.warning() or myLogModule.error()

Run the above example using command prompt (in Windows) as shown below.

C:\> node app.js

Info: Node.js started

Thus, you can create a local module using module.exports and use it in your
application.

Export Module in Node.js

Here, you will learn how to expose different types as a module using
module.exports.

The module.exports is a special object which is included in every JavaScript file
in the Node.js application by default. The module is a variable that represents the
current module, and exports is an object that will be exposed as a module. So,
whatever you assign to module.exports will be exposed as a module.

Let's see how to expose different types as a module using module.exports.
Export Literals

As mentioned above, exports is an object. So it exposes whatever you assigned
to it as a module. For example, if you assign a string literal then it will expose
that string literal as a module.

The following example exposes simple string message as a module in
Message.|s.

Message.js

Copy

module.exports = 'Hello world’;

Now, import this message module and use it as shown below.
app.js

Copy

var msg = require('./Messages.js");

console.log(msg);

Run the above example and see the result, as shown below.

C:\> node app.js

Hello World

Note:

You must specify ./ as a path of root folder to import a local module. However, you
do not need to specify the path to import Node.js core modules or NPM modules in
the require() function.

Export Object

The exports is an object. So, you can attach properties or methods to it. The
following example exposes an object with a string property in Message.js file.

Message.js

Copy

exports.SimpleMessage = 'Hello world’;
/lor

module.exports.SimpleMessage = 'Hello world’;

In the above example, we have attached a property SimpleMessage to the exports
object. Now, import and use this module, as shown below.

app.js
Copy
var msg = require('./Messages.js");
console.log(msg.SimpleMessage);

In the above example, the require() function will return an object {
SimpleMessage : 'Hello World'} and assign it to the msg variable. So, now you
can use msg.SimpleMessage.

Run the above example by writing node app.js in the command prompt and see
the output as shown below.

C:\> node app.js

Hello World

In the same way as above, you can expose an object with function. The
following example exposes an object with the log function as a module.

Log.js
Copy

module.exports.log = function (msg) {

console.log(msg);

}

The above module will expose an object-{ log : function(msg){
console.log(msg); } } . Use the above module as shown below.

app.Js

Copy

var msg = require('./Log.js");
msg.log('Hello World'");

Run and see the output in command prompt as shown below.

C:\> node app.js
Hello World

You can also attach an object to module.exports, as shown below.
data.js

Copy

module.exports = {
firstName: 'James’,
lastName: 'Bond'
}

app.js
Copy

var person = require('./data.js");
console.log(person.firstName + ' ' + person.lastName);

Run the above example and see the result, as shown below.

C:\>nodeapp.js

James Bond

Node.js File System

Node.js includes fs module to access physical file system. The fs module is
responsible for all the asynchronous or synchronous file 1/O operations.

Let's see some of the common 1/0O operation examples using fs module.
Reading File

Use fs.readFile() method to read the physical file asynchronously.

fs.readFile(fileName [,options], callback)
Parameter Description:

« filename: Full path and name of the file as a string.

« options: The options parameter can be an object or string which can include
encoding and flag. The default encoding is utf8 and default flag is "r".

« callback: A function with two parameters err and fd. This will get called
when readFile operation completes.

The following example demonstrates reading existing TestFile.txt
asynchronously.

Example: Reading File
Copy
var fs = require('fs’);

fs.readFile('TestFile.txt', function (err, data) {
if (err) throw err;

console.log(data);

ol

The above example reads TestFile.txt (on Windows) asynchronously and
executes callback function when read operation completes. This read operation
either throws an error or completes successfully. The err parameter contains
error information if any. The data parameter contains the content of the specified
file.

The following is a sample TextFile.txt file.
TextFile.txt

Copy

This is test file to test fs module of Node.js

Now, run the above example and see the result as shown below.

C:\> node server.js

This is test file to test fs module of Node.js

Use fs.readFileSync() method to read file synchronously as shown below.

Example: Reading File Synchronously

Copy

var fs = require('fs’);

var data = fs.readFileSync(‘dummyfile.txt', 'utf8");
console.log(data);

Writing File

Use fs.writeFile() method to write data to a file. If file already exists then it
overwrites the existing content otherwise it creates a new file and writes data
into it.

fs.writeFile(filename, data[, options], callback)
Parameter Description:

« filename: Full path and name of the file as a string.

« Data: The content to be written in a file.

. options: The options parameter can be an object or string which can include
encoding, mode and flag. The default encoding is utf8 and default flag is "r".

« callback: A function with two parameters err and fd. This will get called
when write operation completes.

The following example creates a new file called test.txt and writes "Hello
World" into it asynchronously.

Example: Creating & Writing File

Copy

var fs = require('fs");

fs.writeFile(‘test.txt', 'Hello World!", function (err) {
if (err)
console.log(err);
else
console.log("Write operation complete.");

b,

In the same way, use fs.appendFile() method to append the content to an existing
file.

Example: Append File Content

Copy

var fs = require('fs’);

fs.appendFile(‘test.txt’, 'Hello World", function (err) {

if (err)
console.log(err);
else
console.log('Append operation complete.’);
bk
Open File

Alternatively, you can open a file for reading or writing using fs.open() method.

fs.open(path, flags[, mode], callback)
Parameter Description:

« path: Full path with name of the file as a string.

« Flag: The flag to perform operation

« Mode: The mode for read, write or readwrite. Defaults to 0666 readwrite.

« callback: A function with two parameters err and fd. This will get called
when file open operation completes.

Flags

The following table lists all the flags which can be used in read/write operation.

r Open file for reading. An exception occurs if the file does not exist.

r+ Open file for reading and writing. An exception occurs if the file does not exist.
rs Open file for reading in synchronous mode.

rs+ Open file for reading and writing, telling the OS to open it synchronously. See notes for 'rs'
this with caution.

w Open file for writing. The file is created (if it does not exist) or truncated (if it exists).

wx Like ‘w' but fails if path exists.

w+ Open file for reading and writing. The file is created (if it does not exist) or truncated (if it e
wx+ Like ‘w+' but fails if path exists.

a Open file for appending. The file is created if it does not exist.

ax Like 'a' but fails if path exists.

a+ Open file for reading and appending. The file is created if it does not exist.

ax+ Like 'a+' but fails if path exists.

The following example opens an existing file and reads its content.

Example:File open and read

Copy

var fs = require('fs");
fs.open('TestFile.txt', 'r', function (err, fd) {

if (err) {
return console.error(err);
var buffr = new Buffer(1024);
fs.read(fd, buffr, 0, buffr.length, 0, function (err, bytes) {
if (err) throw err;
/I Print only read bytes to avoid junk.
if (bytes > 0) {

console.log(buffr.slice(0, bytes).toString());
}

/I Close the opened file.
fs.close(fd, function (err) {

if (err) throw err;
ok

b
b
Delete File

Use fs.unlink() method to delete an existing file.

fs.unlink(path, callback);

The following example deletes an existing file.

Example:File Open and Read

Copy

var fs = require('fs");

fs.unlink(‘test.txt', function () {
console.log(‘write operation complete.");

b,

Important method of fs module
fs.readFile(fileName [,options], callback) Reads existing file.

fs.writeFile(filename, data[, options], callback) Writes to the file. If file exists then

overwrite the content otherwise creates

fs.open(path, flags[, mode], callback)
fs.rename(oldPath, newPath, callback)
fs.chown(path, uid, gid, callback)

fs.stat(path, callback)

fs.link(srcpath, dstpath, callback)
fs.symlink(destination, path[, type], callback)
fs.rmdir(path, callback)

fs.mkdir(path[, mode], callback)
fs.readdir(path, callback)

fs.utimes(path, atime, mtime, callback)
fs.exists(path, callback)
fs.access(path[, mode], callback)

fs.appendFile(file, data[, options], callback)

new file.

Opens file for reading or writing.
Renames an existing file.
Asynchronous chown.

Returns fs.stat object which includes

important file statistics.

Links file asynchronously.
Symlink asynchronously.
Renames an existing directory.
Creates a new directory.

Reads the content of the specified

directory.

Changes the timestamp of the file.
Determines whether the specified file exi
Tests a user's permissions for the specifie

Appends new content to the existing

file.

Pagel1

Unit 3
Working with XML
Introduction to XML :

XML stands for eXtensible Markup Language and is a text-based markup language derived from
Standard Generalized Markup Language (SGML). The primary purpose of this standard is to provide way to
store self describing data easily. Self-describing data are those that describe both their structure and their
content. But, HTML documents describe how data should appear on the browsers screen and no
information about the data. XML documents, on the other hand describe the meaning of data. The content
and structure of XML documents are accessed by software module called XML processor.

XML Characteristics:
1. XML is extensible : XML essentially allows you to create your own language, or tags, that suits
your application.
2. XML separates data from presentation : XML allows you to store content with regard to how it

will be presented.

3. XML is a public standard : XML was developed by an organization called the World Wide Web

Consortium (W3C) and available as an open standard.

XML Usage:

A short list of XML's usage says it all
e XML can work behind the scene to simplify the creation of HTML documents for large web sites.
e XML can be used to exchange of information between organizations and systems.
e XML can be used for offloading and reloading of databases.
e XML can be used to store and arrange data in a way that is customizable for your needs.
e XML can easily be mixed with stylesheets to create almost any output desired.

XML features:

XML allows the user to define his own tags and his own document structure.

XML document is pure information wrapped in XML tags.

XML is a text based language, plain text files can be used to share data.

XML provides a software and hardware independent way of sharing data.

XML document structure
An XML document consists of following parts: 1) Prolog 2) Body

1. Prolog:
This part of XML document may contain following parts: XML declaration, Optional processing
instructions, Comments and Document Type Declaration
XML Declaration:
Every XML document should start with one-line XML declaration which describes document itself. The
XML declaration is written as below:
Syn: <?xml version="1.0" encoding="UTF-8"?>
Where version is the XML version and encoding specify the character encoding used in the document. UTF-
8 stands for Unicode Transformation Format is used for set of ASCII characters. It also have standalone
attribute indicates whether the document can be processed as standalone document or is dependent on other
document like Document Type Declaration(DTD).

Syn: <?xml version="1.0" encoding="UTF-8" standalone="yes|no”’?>
Processing Instruction:

Processing Instructions starts with left angular bracket along with question mark(<?),ending with
question mark followed by the right angular bracket(?>). These parameters instruct the application about
how to interpret XML document. XML parser’s do not take care of processing instructions and are not text
portion of XML document.

Ex: <?xsl-stylesheet href="simple.xsl” type="text/xsl”?>

Pagel2

Comments:
Like HTML, comments may use anywhere in XML documents. An XML comments starts with <!—and
ends with -->. Everything with in these will be ignored by the parsers and will not be parsed.

Syn: <!-- this is comments -->
Following points should be remembered while using comments: do not use double hyphens, never place
inside entity declaration or within any tag, never place before XML declaration
Document Type Declaration(DTD):

XML allows to create new tags and have meaning if it has some logical structure created using set of
related tags. <!DOCTYPE > is used to specify the logical structure of XML document by imposing
constraints on what tags can be used and where. DTD may contain Name of root element, reference to
external DTD, element and entity declarations.

2. Body:

This portion of XML document contains textual data marked up by tags. It must have one element
called Document or Root element, which defines content in the XML document. Root element must be the top-
level element in the document hierarchy and there can be one and only one root element.

Ex: <?xml version="1.0"7>
<book>
<title>WT</title>
<author>Uttam Roy</author>
<price>500</price>

</book>
In this document, the name of root element id <book> which contains sub tags <title>, <author> and
<price>. Each of these tags contains text “WT”, “Uttam Roy” and “500” respectively.

XML Elements
An XML element consists of starting tag, an ending tag and its contents and attributes. The contents

may be simple text or other element or both. XML tags are very much similar to that of HTML tags. A tag
begins with less than(<) and ends with greater than(>) character. It takes the form <tag-name> and must
have corresponding ending tag(</tag-name>). An element consists of opening tag, closing tag and contents.
Few tag may not contain any content and hence know as Empty elements. According to the well-formedness
constraint, every XML element must have closing tag. XML provides two ways for XML empty elements as
follows:
Syn:
</br> or

Following are the rules that need to be followed for XML elements:

« An element name can contain any alphanumeric characters. The only punctuation allowed in names

are the hyphen (-), under-score (_) and period (.)

« Names are case sensitive. For example Address, address, ADDRESS are different names

« Element start and end tag should be identical

« An element which is a container can contain text or elements as seen in the above example
Attributes: Attributes are used to describe elements or to provide more information about elements. They
appear in the starting tag of element. The syntax of specifying an attribute in element is:
Syn: <element-name attribute-name="value’> ...</elment-name=>
Ex: <employee gener="male”>ABCD</employee>
There is no strict rules that describes when to use elements and when to use attributes. However, it is
recommended not to use attributes as far as possible due to following reasons:

e Too many attributes reduce readability of XML document

e Attributes cannot contain multiple values, but elements can

e Attributes are not easily extendable

e Attributes cannot represent logical structure, but elements together with their child elements can

o Attributes are difficult to access by parsers

Pagel3
o Attribute values are not easy to check against DTD

Well-formed XML.:
An XML document is said to be well-formed if it contains text and tags that conform with the basic XML well-
formedness constraints. XML can extend existing documents by creating new elements that fit their
applications. The only thing is to remember the well-formedness constraints. The following rules must be
followed by XML documents:

o An XML document must have one and only one root element
All tags must be closed
All tags must be properly nested
XML tags are case-sensitive
Attributes must always be quoted
Certain characters are reserved for processing like pre-defined entities
Pre-defined Entities: W3C specification defined few entities each of which represents a special character
that cannot be used in XML document directly. All XML processors must recognize those entities, whether
they are declared or not.

Entity Name | Entity Number | Description Character
< < Less than <

> > Greater than >

& & Amprersand &

" " Quotation mark | «

' ' Apostrophe ‘

Valid XML

Well-formed XML documents obey only basic well formedness constraints. So, valid XML documents are
those that are well formed and comply with rules specified in DTC or Schema.

Name Space

XML was developed to be used by many applications. If many applications want to communicate using
XML documents, problems may occur. In XML document, element and attribute names are selected by

developers. In some cases two different documents may have same root element. For

example, both

client.xml and server.xml contains same root tag <config> as shown below.

Client.xml Server.xml

<config> <config>
<version>1.0</version> <version>1.0</version>
</config> </config>

XML namespace provides simple, straightforward way to distinguish between element names in XML
document. Namespace suggests to use prefix with every element as follows:

Client.xml Server.xml

<c:config> <s:config>
<c:version>1.0</c:version> <s:version>1.0</s:version>
</c:config> </s:config>

Uniform Resource ldentifier(URI) is used to guarantee the prefixes used by different developers. In general
URL are used to choose unique name. But, URL must be prefixed for each tag instead of them we use
prefix. Prefixes are just shorthand placeholders of URLs. Association of prefix and URL is done in the
starting tag using reserved XML attribute xmlIns.

Syn: xmins:prefix="URI"

Name Space Rules: The xmiIns attribute identifies namespace and makes association between prefix and
created namespace. Many prefixes may be associated with one namespace.

age |4

Default Namespace: Namespaces may not have their associated prefixes and are called default namespace.
In such cases, a blank prefix is assumed for element and all of its descendants.

Document Type Declaration (DTD)
XML Schema languages:

Schema is an abstract representation of object characteristics and its relationship to other objects. An
XML schema represents internal relationship between elements and attributes in XML document. It defines
structure of XML documents by specifying list of valid elements and attributes. XML schema language is a
formal language to express XML schemas. Most popular and primary schema languages are: DTD and W3C
Schema.

1. Document Type Declaration(DTD):

It is one of the several XML schema languages and was introduced as part of XML 1.0. Even though
DTD is not mandatory for an application to read and understand XML document, many developers
recommend writing DTDs for XML applications. Using DTD we can specify various elements types,
attributes and their relationship with in another. Basically DTD is used to specify set of rules for structuring
data in any XML file.

Using DTD in XML document:

To validate XML document against DTD, we must tell validator where to find DTD so that it knows
rules to be verified during validation. A Document Type Declaration is used to make such link and
DOCTYPE keyword is used for this purpose. There are three ways to make this link: Internal DTD, External
DTD and Combined internal and external.

1. Internal DTD:

When we embed DTD in XML document, DTD information is included within XML document
itself. Specifically, DTD information is placed between square brackets in DOCTYPE declaration. The
general syntax of internal DTD is
Syn: <IDOCTYPE root-element [

element-declarations
1>

Where root-element is the name of root element and element-declarations is where we declare the
elements. Since every XML document must have one and only one root element, this is also structure
definition of the entire document. Here, DOCTYPE must be in uppercase, document type declaration must
appear before first element and name following word DOCTYPE i.e. root-element must match with name of
root element.

Advantage of internal DTD is that we have to handle only single xml document instead of many which is
useful for debugging and editing. It is a good idea to use with smaller sized documents. Problem of internal
DTD is that it makes documents difficult to read for big sized document.
Ex: <?xml version="1.0" ?>
<IDOCTYPE bookstore [
<IELEMENT bookstore (book*)>
<IELEMENT book (title,author,price)>
<!ELEMENT title (#PCDATA)>
<!IELEMENT author (#PCDATA)>
<IELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
1>
<bookstore>
<book>
<title>WT</title>

Pagel5

<author>Uttam Roy</author>
<publisher>Oxford</publisher>
<price>500</price>

</book>

<book>

<title>AJ</title>
<author>Schildt</author>
<publisher>TMH</publisher>
<price>200</price>

</book>

</bookstore>
2. External DTD:

Another way of connection DTD to XML document is to reference it with in XML document i.e.
create separate document, put DTD information there and point to it from XML document. The general
syntax for external DTD is.

Syn: <IDOCTYPE root-element SYSTEM | PUBLIC "uri">

Where uri is the Uniform Resource Identifier of the .dtd file. This declaration states that we are going to
define structure of root-element of XML document and its definition can be found from uri specified like
book.dtd. both xml and dtd files should be kept in same directory.

Ex:

book.xml book.dtd

<?xml version="1.0" ?> <!ELEMENT bookstore (book*)>

<IDOCTYPE book SYSTEM "book.dtd"> <IELEMENT book (title,author,price)>

<bookstore> <!IELEMENT title #PCDATA)>

<book> <IELEMENT author (#PCDATA)>
<title>WT<l/title> <IELEMENT publisher (#PCDATA)>
<author>Uttam Roy</author> <IELEMENT price (#PCDATA)>
<publisher>0xford</publisher>
<price>500</price>

</book>

<book>
<title>AJ</title>
<author>Schildt</author>
<publisher>TMH</publisher>
<price>200</price>

</book>

</bookstore>

Location of DTD need not always be local file, it can be any valid URL. Following declaration for XHTML
uses PUBLIC DTD:
Syn: </DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN >
Disadvantage of using separate DTD is we have to deal with two documents.
3. Combining Internal and External DTD:
External DTD are useful for common rules for set of XML documents, whereas internal DTDs are beneficial
for defining customized rules for specific document. XML allows to combine both internal and external
DTD for complete collection of rules for given document. The general form of such DTD is:
Syn: <!DOCTYPE root-element SYSTEM | PUBLIC "uri*" [DTD declarations... 1 >
Ex: <?xml version="1.0" ?>

<IDOCTYPE book SYSTEM "book.dtd"

[<!ELEMENT excl ‘">

1>

<msg=>Hello, World! </msg>

Pagel|6

DTD validation:
We'll use Java based DTD validator to validate the bookstore.xml against the books.dtd
DTDValidator.java
import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
public class DTDValidator
{

public static void main(String[] args) {

try {

DocumentBuilderFactory f = DocumentBuilderFactory.newlinstance();
f.setValidating(true); // Default is false
Document d = f.newDocumentBuilder().parse(arg[0]);

}
catch (Exception e) { System.out.printin(e.toString()); }

}

Element Type Declaration:

Elements are primary building blocks in XML document. Element type declaration set the rules for
type and number of elements that may appear in XML document, what order they may appear in.
Syn: <IELEMENT element-name type>
Or
<IELEMENT element-name (content)>
Here, element-name is name of element to be defined. The content could include specific rule, data or
another element(s). The keyword ELEMENT must be in upper case, element names are case sensitive, all
elements used in XML must be declared and same name cannot be used in multiple declarations.
In DTD, elements are classified depending upon their content as follows:
e Standalone/Empty elements: these elements cannot have any content and may have attributes. They
can be declared using type keyword EMPTY as follows:
Syn: <IELEMENT element-name EMPTY> Ex: <IELEMENT br EMPTY>
e Unrestricted elements: element with content can be created using content type as ANY. Keyword
ANY indicates that element-name can be anything including text and other elements in any order and
any number of times.
Syn: <IELEMENT element-name ANY> EXx: <IELEMENT msg ANY>
o Simple elements: simple element cannot contain other elements, but contains onlytext.
Syn: <IELEMENT element-name (#PCDATA)> Ex: <IELEMENT author (#PCDATA)>
This interprets that element element-name can have only text content. The type of text id PCDATA
means Parsed Character DATA and the text will be parsed by parser and will examined for entities
and markups and expanded as and when necessary. Sometimes we can use CDATA means Character
DATA in place of PCDATA.
e Compound elements: compound elements ca contains other elements known as child elements.
Syn: <!ELEMENT element-name (child-elements-names)>
Ex: <IELEMENT book (title, author, price)>
Occurrence Indicator: sometimes it is necessary to specify how many times element may occur in
document which is done by Occurrence Indicator. When no occurrence indicator is specified, child element
must occur exactly once in XML document

Operator Syntax | Description

None a Exactly one occurrence of a

* (Astrisck) ax Zero or more occurrences of a i.e. any number of times
+ (Plus) at One or more occurrences of a i.e. at least once

Pagel7

| ? (Question mark) | a? | Zero or one occurrences of a i.e. at most once |

Declaring multiple children: elements with multiple children are declared with names of the child elements
inside parenthesis. The child elements must also be declared.

Operator Syntax Description

, (Sequence) | a,b a followed by b

| (Choice) alb aorb

() (Singleton) | (expression) | Expression is treated as a unit

Attribute Declaration:
Attributes are used to associate name, value pairs with elements. They are useful when we want to provide
some additional information about elements content. The declaration starts with ATTLIST followed by
name of the element the attributes are associated with and declaration of individual declarations:
Syn: <IATTLIST element-name attribute-name attribute-type default-vale>
Ex: <IATTLIST employee geneder CDATA ‘male’/>
Here, ATTLIST must be in upper case. The default-value can be any of the following:

Default: in this case, attribute is optional and developer may or may not provide this attribute. When
attribute is declared with default value, the value of attribute is whatever value appears as attributes
content in instance document.

Ex: <IATTLIST line width CDATA ‘100°/>

#REQUIRED: attribute must be specified with value every time enclosing element is listed

Ex: <IATTLIST line width CDATA #RQUIRED />

#FIXED: attribute is optional and is used to ensure that the attributes are set to particular values.

Ex: </ATTLIST line width CDATA #FIXED ‘50°/>

#IMPLIED: similar to that of default attribute except that no default value is provided by XML

Ex: <!ATTLIST line width CDATA ‘#IMPLIED’ />

Attribute types:
The attribute-type can be one among string or CDATA, tokenized and enumerated types.

String type: may take any literal string as value and can be declared using keyword CDATA. An
attribute of CDATA type can contain any character if it conforms to well formedness constraints.
Some it can contains escape characters like <, > etc.
Tokenized type: following tokenized types are available
o ID: it is globally unique identifier of attribute, this means value of ID attribute must not
appear more than once throughout the XML document and resembles primary key concept of
data base.
<IATTLIST question no ID #REQUIRED>
o IDREF: similar to that of foreign key concept in databases and is used to establish
connections between elements. IDREF value of the attribute must refer to ID value declared
<IATTLIST answer gno IDREF #REQUIRED>
o IDREFS: it allows a list of ID values separated by white spaces
<IATTLIST answer gno IDREFS #REQUIRED>
o NMTOKEN: it restricts attributes value to one that is valid XML name means allows
punctuation marks and white spaces.
<IATTLIST car serial NMTOKEN #REQUIRED>
o NMTOKENS: can contains same characters and white spaces as NMTOKEN. White space
includes one or more characters, carriage returns, line feeds, tabs
<IATTLIST car serial NMTOKENS #REQUIRED>
o ENTITY: refers to external non parsed entities
<IATTLIST car serial ENTITY #REQUIRED>
o ENTITIES: values of ENTITIES attribute may contain multiple entity names separated by
one or more white spaces
<IATTLIST car serial ENTITIES #REQUIRED>

Pagel 8

Enumerated type: enumerated attribute values are used when we want attribute value to be one of
fixed set of values. There are two kinds of enumerated types:

o Enumeration: attributes are defined by a list of acceptable values from which document
author must choose a value. The values are explicitly specified in declaration, separated by
pipe())
<IATTLIST employee gender (male|female) #REQUIRED>

o Notation: it allows to use value that has been declared a NOTATION in DTD. Notation is
used to specify format of non-XML data and common used is to describe MIME types like
image/gif, image/jpeg etc.
<INOTATION jpg SYSTEM ‘image/gif’>
<IENTITY logo SYSTEM ‘logo.jpg’ NDATA jpg>
<IATTLIST photo format NOTATION (jpg) #IMPLIED>

Entity Declaration:

Entities are variables that represent other values. If a text contains entities, the value of entity is

substituted by its actual value whenever the text is parsed. Entity must be defined in DTD declaration to use
custom entites in XML document. Built-in entities and character entities do not require any declaration.
There are two types of entity declarations: General entity and Paramter entity. Each type can be again Parsed
or Unparsed.

General and Parameter entities: General entities are used with in the document content. Parameter
entities are parsed entites used with in DTD. These two types of entites use different forms of
references and are recognized in different contexts. They occupy different namespaces

Parsed and Unparsed entities: Parsed entity is an entity whose content is parsed and checked for
well formedness constraint during parsing procedure. Unparsed entity is resource whose contents
may or may not be text and if text may not be XML. It means there are no constrainst on conetents of
unparsed entities. Each unparsed entity has associated notation, identified by name.

General Entity Declaration:
There are three kinds of general entitity declarations:

Internal parsed: an internal entity declaration has following form

Syn: <IENTITY entity-name “entity-value”>

Ex: <!ENTITY UKR “Uttam Kumar Roy”>
The entity UKR can be referred in XML document as follows:

<author>&UKR;</author>
This will be interprested as : <author>Uttam Kumar Roy</author>
External parsed: external entities allow an XML document to refer to external resource.Parse
external entites refer to data that an XML parser has to parse and used for long replacement text
which is kept in another file. There are two type of external parsed entities: Public and Private.
Public external enties are identified by PUBLIC keyword and intended for general use. Private
external entites are identified by SYSTEM keyword and are intended for use by single author or
group of authors.

Syn: <!ENTITY entity-name SYSTRM | PUBLIC “URI">

Ex: <IENTITY author SYSTEM “author.xml”>
External unparsed: refer to data that an XML processor does not have to parse. For example,
there are numerious ASCII text files, JPRG photographs etc. None of theseare well formed XML.
Mechanism that XML suggests for embedding these files is enternal unparsed entity. They can be
either private or public.

Syn: <!/ENTITY logo SYSTEM “logo.jpg” NDATA jpeg>

Parameter Entity Declaration:

DTD supports another kind of entity called parameter entity. It is used within DTD which allows to

assign collection of elements, attributes and attribute values to name and refer them using name instead of
explicitly listimg them every time they are used.

Pagel9

e Internal parsed entity: it has following form
Syn: <IENTITY % entity-name entity-definition>
Ex: <!ENTITY % name ‘‘firstname, middlename, lastname >
This parameter entity describes portion of content model that can be referenced with in
elements ind DTD. They can be referenced using entity name between precent sign(%) and
semicolor(;).
Syn: %Entity-name; Ex: %name;

o External parsed entity: These are used to link external DTDs. It may be private or public and is
identified by keywords SYSTEM and PUBLIC. Private entites are intended for use by single
author where as public entities can be used by anyone.

Syn: <IENTITY % entity-name SYSTEM | PUBLIC “URI">

2. XML Schema:

XML Schema Definition commonly known as XSD, is a way to describe precisely the XML
language. XSD check the validity of structure and vocabulary of an XML document against the grammatical
rules of the appropriate XML language.An XML document can be defined as:

e Well-formed: If the XML document adheres to all the general XML rules such as tags must be
properly nested, opening and closing tags must be balanced and empty tags must end with '/>', then it
is called as well-formed.

o Valid: An XML document said to be valid when it is not only well-formed, but it also conforms to
available XSD that specifies which tags it uses, what attributes those tags can contain and which tags
can occur inside other tags, among other properties.

Limitaions of Document Type Declaration (DTD)
There is no bult-in data type in DTDs
No new data types can be created in DTDs
The use of cardinatlity in DTDs is limited
Namespaces are not supported
DTDs provide very limited support for modularity and reuse
We can not put any restrictions on text content
Defaults for elements can not be specified
We have very little control over mixed content
o DTDs are written in strange format and are difficult to validate
Strengths of XML Schema(XSD)
e XML schema provided much grater specification than DTDs
e They support large number of built-in data types
They support namespaces
They are extensible to future additions
They support uniqueness and referencial integrity constraints in much better way
It is easier to define data restrictions

XSD Structure:
An XML XSD is kept in a separate document and then the document having extension .xsd and is be
linked to the XML document to use it. Schema is the root element of XSD and it is always required.
Syn: <?xml version="1.0"?>
<xs:schema xmlins:xs="http://www.w3.0rg/2001/XMLSchema">

</xs:schema>

Above fragement specifies that elements and datatypes used in the schema are defined in
"http://mww.w3.0rg/2001/XMLSchema™ namespace and these elements/data types should be prefixed with
xs. Similarly, XSD can be linked to xml file with following syntax:

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Pagel 10

Syn: <roo-tag xmins:xsi="" http://www.w3.0rg/2001/XMLSchema-instance” xsi:schemaLocation="uri">
Above fragement specifies default namespace declaration i.e. "http://www.w3.0rg/2001/XMLSchema-
instance”. This namespace is used by schema validator check that all the elements are part of this
namespace. It is optional. Use schemaL ocation attribute to specify the location of the xsd file.
Ex:_book.xml
<?xml version="1.0" ?>
<bookstore xsi:schemalocation="book.xsd” xmins:xsi=""http://www.w3.0rg/2001/XMLSchema-instance ”
>
<book>
<title>WT</title>
<author>Uttam Roy</author>
<publisher>0xford</publisher>
<price>500</price>
</book>
<book>
<title>AJ</title>
<author>Schildt</author>
<publisher>TMH</publisher>
<price>200</price>
</book>
</bookstore>
book.xsd
<?xml version="1.0"?>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="bookstore ">
<xs:complexType>
<xs:sequence>
<xs:element name="book”>
<xs:complexType>
<xs:sequence>
<xs:element name=""title” type="xs:string />
<xs:element name="author” type="xs:string”’/>
<xs:element name="publisher” type="xs:string />
<xs:element name="price” type="xs:integer”/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

XSD Validation:
We'll use Java based XSD validator to validate the bookstore.xml against the books.xsd.
XSDValidator.java
import java.io.*;
import javax.xml.*;
import javax.xml.transform.dom.*;
import javax.xml.parsers.*;
import javax.xml.validation.*;
import org.w3c.dom.*;

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

Page| 11

public class XSDValidator {
public static void main(String[] args) {
try {
SchemaFactory factory =
SchemaFactory.newlnstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = factory.newSchema(new File(args[1]));
Validator validator = schema.newValidator();
DocumentBuilder parser=DocumentBuilderFactory.newlnstance().newDocumentBuilder();
Document document=parser.parse(new File(args[0]));
validator.validate(new DOMSource(document));
}
catch (Exception e)
{ System.out.printIn("Exception: "+e.getMessage()); }

}

Element declaration:

Elements are primary building blocks in XML document. Element type declaration can be done
using <xs:element> tag with following syntax.
Syn: <xs:element name="element-name” type="element-type”’>
Ex: <xs:element name="title” type="xs:string”>

Each element declaration within the XSD has mandatory attribute name. the value of this name
attribute is the element name attribute is the element name that will appear in the XML document. Element
definition may also have optional type attribute, which provides description of what can be containted within
the element when it appears in XML document. Every XML document must have root element. This root
element must be declared first in schema for conforming XML documents.

Ex: <Ixml version="1.0"?>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema ">
<xs.element name="bookstore >
</xs:element>
</xsd:schema>

Declarting simple elements:

Simple type elements can contain only text and/or data. They can not have child elements or
attributes, and can not be empty. Simple elements are defined as follows:

Syn: <xs:element name="element-name” type="element-type”">

Ex: <xs:element name="title” type="xs.string”’/>

The value of type attributes specifies an elements content type and can be any simple type. This
attribute can be any complex type.

o Default Value: Simple Element can have default value that specifies the default content to be used
when not content is specified. When an element is declared with default value, the value of the
element is whatever value appears as elements content in instance document. Following example
illustrates this:

<xs:element name="gender" type="xs:boolean" default="true" />

e Fixed Value: Simple Element can also have optional fixed value. Fixed attribute is used to ensure
that elements content is always set to particular value. Consider the following syntax:

<xs:element name="branch" type="xs:string" fixed="1T" />

e Occurance indicators: an element have two optional attributes : minOccurs and maxOccurs. They
are used to specify the number of times an element can occur in XML document.

o minOccurs: this attribute specifies minimum number of times an element can occur. The
following is example of usage of this attribute:
<xs:element name="option” type="xs:string” minOccurs="0"/>

http://www.w3.org/2001/XMLSchema

Page |12

o maxOccurs: this attribute specifies maximum number of times an element can occur. The
declaration of element will be as follows:

<xs:element name="option” type="xs:string” maxOccurs="10""/>

Schema DTD | Meaning
minOccurs="0’, maxOccurs="unbounded’ | * Zero or more
minOccurs="1", maxOccurs="unbounded’ | + One or more
Minoccurs="0’ ? Optional
None None | Exactly one

Declarting complex elements:

Complex types can be named or can be anonymous. They are associated with complex elements in
the same manner, typically using a type definition and an element declaration. By default, complex type
elements have complex content i.e. they have child elements. Complex type elements can be limited to
having simple content i.e. they contain only text. General form of element declaration is:

Syn: <xs:complexType name="complex-type-name’><xs:sequence>

</xs:sequence></xs:complexType>

Ex: <xs:complexType name="sName"><xs:sequence>

<xs:element name=""first” type="xs:string />

<xs:element name="middle” type="xs:string”’/>

<xs:element name="lase” type="xs:string />
</xs:sequence></xs:complexType>

Atribute declaration:
Attrbibutes are used to describe properties of an element. Attributes themselves are always declared
as simple types as follows:
Syn: <xs:attribute name”attribute-name” type="attribute-type ">
Ex: <xs:attribute name="id"" type="xs:string />
Simple types can not have attributs. Element that have attributes are complex types. So, attributes
declaration always occurs as part of complex type declaration, immediately after its content model.
Ex: <xs:complexType name="sName’><xs:sequence>
<xs:element name=""first” type="xs:string />
<xs:element name="middle” type="xs:string”/>
<xs:element name="lase” type="xs:string”’/>
</xs:sequence>
<xs:attribute name="id" type="xs:string />
</xs:complexType>
A part from this simple definition, there can be additional specifications for attributes:

e Attribute element properties:
o use: possible values are optional, required and prohibited.
<xs:attribute name="id” type="xs:string” use="required />
o default: this specifies the value to be used if attribute is not specified
<xs:attribute name="gender” type="xs:boolean” default="false”/>
o fixed: it specifies that attribute, if it appears must always have fixed value specified. If the
attribute does not appear, the schema processor will provide attribute with value specified
here.
<xs:attribute name="unit” type="xs:boolean” default="rpm”/>
e Order Indicators
o All: Child elements can occur in any order.
<xs:all>
<xs:element name=""first” type="xs:string”’/>
<xs:element name="middle” type="xs:string”’/>
<xs:element name="last” type="xs:string />

Page[13

</xs:all>
o Choice: Only one of the child element can occur.
<xs:choice>
<xs:element name=""first” type="xs:string />
<xs:element name="middle” type="xs:string”’/>
<xs:element name="last” type="xs:string"’/>
</xs:choice>
o Sequence: Child element can occur only in specified order.
<xs:sequence>
<xs:element name=""first” type="xs:string />
<xs:element name="middle” type="xs:string”’/>
<xs:element name="last” type="xs:string />
</xs:sequence>
e Occurence Indicators
o maxOccurs - Child element can occur only maxOccurs number of times.
o minOccurs - Child element must occur minOccurs number of times.
e Group Indicators
o Group: a set of related elements can be created using this indicator. the general form for
creating an element group is as follows:
Syn: <xs:group name="group-name”> ... </ xs:group>
Ex: <xs:group name="personinfo’’>
<xs:element name=""first” type="xs:string />
<xs:element name="middle” type="xs:string”’/>
<xs:element name="last” type="xs:string />
</ xs:group>
o attributeGroup: XML Schema provides this element, which is used to group a set of
attributes declarations so that they can be incorporated into complex types definitions with
syntax:
Syn: <xs:attributeGroup name="group-name”’> ... </ xs:attributeGroup>
Ex: <xs: attributeGroup name="personlnfo ">
<xS:element name=""first” type="xs:string”’/>
<xs:element name="middle” type="xs:string”’/>
<xs:element name="last” type="xs:string”’/>
</ xs: attributeGroup>

Annotations declaration:

XML schema provides three annotation elements for documentation purposes in XML schema
instance. They provide a way to write realistic ans structured comments for the benefit of applications. An
annotation is represented by <annotation> element which typically appears at the beginning of most
schemas. However, it can appear inside any complex element definition. It can contain only two elements
<appinfo> and <documentation> any number of times. Following is an example:

<xs:annotation>

<xs:documentation> <author>Uttam Roy</author></xs:documentation>
<xs:appinfo><version>2.1</version></xs:appinfo>

</xs.annotation>

XML Scheme data types:

An element is limited by its type. Depending upon content model, elements are categorized as
Simple or Complex type. A simple type can further be divided into three types: Atomic, List and Union.
XML schema 1.0 specification provides about 46 built in data types. All built-in data types except anyType
are considered as simple types. Some of the built-in data types are as follows:

Page| 14

XSD String Data Types:
String data types are used to represent characters in the XML documents.

<xs:string>: The <xs:string> data type can take characters, line feeds, carriage returns, and tab
characters. XML processor do not replace line feeds, carriage returns, and tab characters in the
content with space and keep them intact. For example, multiple spaces or tabs are preserved during
display.

Syn: <xs:element name="elment-name" type="xs:string"/>

Ex: < xs:element name="sname" type="xs:string"/>

<xs:token>: The <xs:token> data type is derived from <string> data type and can take characters,
line feeds, carriage returns, and tab characters. XML processor removes line feeds, carriage returns,
and tab characters in the content and keep them intact. For example, multiple spaces or tabs are
removed during display.

Syn: <xs:element name="element-name" type="xs:token"/>

Following is the list of commonly used data types which are derived from <string> data type.
¢ ID: Represents the ID attribute in XML and is used in schema attributes.
¢ IDREF: Represents the IDREF attribute in XML and is used in schema attributes.
e Language:Represents a valid language id
o Name: Represents a valid XML name
¢ NMTOKEN: Represents a NMTOKEN attribute in XML and is used in schema attributes.
e normalizedString: Represents a string that does not contain line feeds, carriage returns, or tabs.
¢ String: Represents a string that can contain line feeds, carriage returns, or tabs.
o Token: Represents a string that does not contain line feeds, carriage returns, tabs, leading or trailing

spaces, or multiple spaces

XSD Date & Time Data Types:
Date and Time data types are used to represent date and time in the XML documents.

<xs:date> data type: The <xs:date> data type is used to represent date in YYYY-MM-DD format.
Each component is required. YYYY- represents year, MM- represents month, DD- represents day

Syn: <xs:element name="birthdate" type="xs:date"/>

Ex: <birthdate>1980-03-23</birthdate>

<xs:time> data type: The <xs:time> data type is used to represent time in hh:mm:ss format. Each
component is required. hh- represents hours, mm- represents minutes, ss- represents seconds

Syn: <xs:element name="startTime" type="xs:time"/>

Ex: <startTime>10:20:15</startTime>

<xs:datetime> data type: The <xs:datetime> data type is used to represent date and time in YYYY-
MM-DDThh:mm:ss format. Each component is required. YYYY- represents year, MM- represents
month, DD- represents day, T- represents start of time section, hh- represents hours, mm- represents
minutes, ss- represents seconds

Syn: <xs:element name="startTime" type="xs:datetime"/>

Ex: <startTime>1980-03-23T10:20:15</startTime>

<xs:duration> data type: The <xs:duration> data type is used to represent time interval in
PnYnMnDTnHnMnS format. Each component is optional except P. P- represents year, nY-
represents month, nM- represents day, nD- represents day, T- represents start of time section, nH-
represents hours, nM- represents minutes, nS- represents seconds

Syn: <xs:element name="period" type="xs:duration"/>

Element usage in xml to represent period of 6 years, 3 months, 10 days and 15 hours.

Ex: <period>P6Y3M10DT15H</period>

Following is the list of commonly used date data types .

Date: Represents a date value

dateTime: Represents a date and time value
duration: Represents a time interval

gDay: Represents a part of a date as the day (DD)

Pagel 15

gMonth: Represents a part of a date as the month (MM)

gMonthDay: Represents a part of a date as the month and day (MM-DD)
gYear: Represents a part of a date as the year (YYYY)

gYearMonth: Represents a part of a date as the year and month (YYYY-MM)
time: Represents a time value

XSD Numeric Data Types:
Numeric data types are used to represent numbers in the XML documents.

<xs:decimal> data type: The <xs:decimal> data type is used to represent numeric values. It support
decimal numbers upto 18 digits.
Syn: <xs:element name="score" type="xs:decimal"/>
Ex: <score>9.12</score>
<xs:integer> data type: The <xs:integer> data type is used to represent integer values.
Syn: <xs:element name="score" type="xs:integer"/>
Ex: <score>9</score>

Following is the list of commonly used numeric data types .

Byte: A signed 8 bit integer

Decimal: A decimal value

Int: A signed 32 bit integer

Integer: An integer value

Long: A signed 64 bit integer

negativelnteger: An integer having only negative values (..,-2,-1)
nonNegativelnteger: An integer having only non-negative values(0,1,2,..)
nonPositivelnteger: An integer having only non-positive values (..,-2,-1,0)
positivelnteger: An integer having only positive values (1,2,..)

short: A signed 16 bit integer

unsignedLong: An unsigned 64 bit integer

unsignedInt: An unsigned 32 bit integer

unsignedShort: An unsigned 16 bit integer

unsignedByte: An unsigned 8 bit integer

XSD Miscalleneous Data Types
Other Important Miscellaneous data types used are boolean, binary and anyURI.

<xs:boolean> data type: The <xs:boolean> data type is used to represent true, false, 1 (for true) or O
(for false) value.

Syn: <xs:element name="pass" type="xs:boolean"/>

Ex: <pass>false</pass>

Binary data types: The Binary data types are used to represent binary values. Two binary types are
common in use. base64Binary- represents base64 encoded binary data, hexBinary - represents
hexadecimal encoded binary data

Syn: <xs:element name="blob" type="xs:hexBinary"/>

Ex: <blob>9FEEF</blob>

<xs:anyURI> data type: The <xs:anyURI> data type is used to represent URI.

Syn: <xs:attribute name="resource" type="xs:anyURI"/>

Ex: <image resource="http://www.tutorialspoint.com/images/smiley.jpg" />

eXtensible Stylesheet Language Transformation(XSLT):

XML documents contain self-describing and structured data. The set of tags and their structure

varies widely in different applications. Web browsers can not display such non-HTML files as they have no
prior knowledge about the meaning of set of tags used in different XML documents. Users may also want to

http://www.tutorialspoint.com/images/smiley.jpg

Pagel 16

generate new XML documents from one or more existing XML documents for processing or sharing of data
between different applications. One possible solution is to generate separate XML document such that the
former contains only insensitive data. XSLT comes into play in this scenario.

XSLT, Extensible Stylesheet Language Transformations provides the ability to transform XML
data from one format to another automatically. An XSLT stylesheet is used to define the transformation
rules to be applied on the target XML document. XSLT stylesheet is written in XML format. XSLT
Processor takes the XSLT stylesheet and apply the transformation rules on the target XML document and
then it generates a formatted document in form of XML, HTML or text format. This formatted document
then is utilized by XSLT formatter to generate the actual output which is to be displayed to the end user.

Following are the main parts of XSL.

e XSLT - used to transform XML document into various other types of document.

e XPath - used to navigate XML document.

e XSL-FO - used to format XML document.
In general following tasks can be performed using XSLT: Constant text generation, Reformatting of
information, sensitive information suppression, adding new information, copying information and Sorting
document with respect to a criteria.

Advantages
« Independent of programming. Transformations are written in a seperate xsl file which is againan
XML document.

o Output can be altered by simply modifing the transformations in xsl file. No need to change inany
code. So Web designers can edit stylesheet and can see the change in output quickly.

1. Stylesheet strcture:

XSLT files are themselves XML documents and hence must follow the well-formedness
constraints. The W3C defined the exact syntax of an XSLT 2.0 document by XML schema. XSLT file starts
with XML declaration. Every XSLT file must have either <stylesheet> or <transform> as root element.
Following are simple structure of XSLT document:

<?xml version="1.0"?>
<xsl:stylesheet version="2.0" xmins:xsl="http://lwww.w3.0rg/1999/XSLT/Transform >

</ xsl:stylesheet>
Or
<?xml version="1.0"7>
<xsl:transform version="2.0" xmlins:xsi="http://www.w3.0rg/1999/XSLT/Transform ">

</ xsl: transform >
These elements must have the attribute version and namespace attribute xmins. \Version attribute
indicate version of XSLT being used. Namespace attribute distinguishes XSLT elements from other
elements. There are different ways to apply XSLT document to XML document. One way to add link to
XML document which points to actual XSLT files and lets the browsers do transformation with following
declaration:
<?xml version ="1.0"?>

http://www.w3.org/1999/XSLT/Transform
http://www.w3.org/1999/XSLT/Transform

Pagel 17

<?xml-stylesheet type="text/xsl” href="URI">

<root> </root>
students.xml students.xsl
<?xml version="1.0"?7> <?xml version="1.0"?>
<?xml-stylesheet type="text/xsl” | <xsl:stylesheet version="2.0"
href="students.xsl”> xmins.:xsl="http://mww.w3.0rg/1999/XSLT/Transform >
<class>
</ xsl:stylesheet>
</class>

2. XSLT Elements:

An XSLT file contains elements, which instruct processor how an XML document is to be
transformed. It may contain elements that are not defined by XSLT. In such cases, XSLT processor does not
process these non-XSLT elements and add them to the ouput in the same order they occurred in the source
XSLT document. This means that the transformed XML document may use original mark-ups as well as
new mark-ups.

Element Description
stylesheet Defines the root element of a style sheet
transform Defines the root element of a style sheet
template Rules to apply when a specified node is matched
apply-templates |Applies a template rule to the current element or to the current element's child nodes
call-template Calls a named template
element Creates an element node in the output document
variable Declares a local or global variable
param Declares a local or global parameter
value-of Extracts the value of a selected node
attribute Adds an attribute
attribute-set Defines a named set of attributes
if Contains a template that will be applied only if a specified condition is true
choose Used in conjunction with <when> and <otherwise> to express multiple conditional tests
when Specifies an action for the <choose> element
for-each Loops through each node in a specified node set
. Imports the contents of one style sheet into another. Note: An imported style sheet has
import . -

lower precedence than the importing style sheet
. Includes the contents of one style sheet into another. Note: An included style sheet has
include .)

the same precedence as the including style sheet
sort Sorts the output
processing- \Writes a processing instruction to the output
instruction
comment Creates a comment node in the result tree
copy Creates a copy of the current node (without child nodes and attributes)
copy-of Creates a copy of the current node (with child nodes and attributes)

3. XSLT templates:

An XSLT document is all about template rules. A template specifies rule and instruction, which is
executed when rule matches. The rule is specified by XSLT <template> element. It has attribute match,
which specifies pattern. The value of match attribute is subset of expression.

http://www.w3.org/1999/XSLT/Transform

Pagel 18
Syn: <xsl:template match="expression”">

</xsl:template>
Ex: <xsl:template match="/">

<h1>Hello! World.</h1>

</xsl:template>

XSLT document contain single template rule. It has match attribute with expressin “/”, which
means the document root of any XML document. Ths instruction with in this template specifies the string
Hello! World has to be added to the output and the resulting document obtained is as follows:

<html> <body><h1>Hello! World.</h1></body> </html>
Applying templates:

In general, if a node matches with template pattern, the templates action part is processed. It is also
possible to instruct XSLT processor to process other template rules if any. This is done using <apply-
templates> element with following syntax:

<xsl:template match="7">

<xsl:apply-templates/>

</xsl:template>
This example states that whenever document root is encountered, XSLT processor has to process all
templates that match with document roots children roots. The XSLT engine in turn, compares each child
element of document root aginst templates in style sheet and if match is found, it processes the
corresponding template.
Processing Sequence and default templates:

When XSLT processor is supplied XML document for transformation using XSLT document, it
first creates document tree. Processing always starts from document root of this tree. So, XSLT processor
looks for template for it. If no template is found for document root, XSLT processor provides default
templates. This default template for document root looks like this:

<xsl:template match="7">
<xsl:apply-templates/>
</xsl:template>
The behaviour of default template for any element node looks as follows:
<xsl:template match=""%*">
<xsl:apply-templates/>
</xsl:template>
Default template for text nodes as follows:
<xsl:template match="text() ’>
<xsl:apply-templates/>

</xsl:template>

Default templates and their behavior:
° Root: process template for its children
° Element: process templates for its children
° Attribute: output attribute name andvalue
o Text: output text value
° Processing instruction: do nothing
° Comment: do nothing

Named templates:

XSLT named templates resemble the functions in any procedural programming language. The
<template> element has name attribute, which can be used to give name to template. Once template is
created this way, it can be called by using <call-template> element and specifying its name.

<xsl:template match="7">

<xsl:call-template name="header”’/>
</xsl:template>

Pagel 19

<xsl:template name="header >
<title>XSLT</title>
</xsl:template>

4. Selecting values:
The value of a node can also be added using <value-of> element. Value of node depends on type

of the node. For example, the value of text node is the text itself, whereas the value of element node is
concatenation of values of all text descendents. If multiple nodes are selected by select attribute, value is
concatenation of values of those selected attributes. Consider simple XML document:
<book>
<title>Web Technologies</title>
</book>
One can now extract the value of title element using <value-of> elemement as follows:
<xsl:template match="7">
Title: <xsl:value-of select="book/title”/>
</xsl:template>
This XSLT file, on applying previous XML document produces following result:
Title: Web Technologies
Values of different node types:
. Text: text of node
Element: concatenation of values of all text descendants
Attribute: attribute value without quotation marks
Namespace: the URI of the namespace
Comment: anything between <!--and -->
Processing instruction: anything between <? and ?>
XSLT has another element <copy-of>, which returnas all selected elements including nested
elements and text. Consider the following XSLT document.
<xsl:template match="7">
<xsl:copy-of select="".""/>
</xsl:template>
When we apply this XSLT document to any XML document, it produces the same XML
document. This is because, when root element (/) is selected, <copy-of> copies root element together with
all child elements recursively.

5. Varaibale and Parameters:

Named templates resembles the functions in any procedural programming language. Like function,
named templates may accept argument. Formal parameters are declard with in template using <param>
element as follows:

<xsl:template name="add ">
<xsl:param name="a"/>
<xsl:param name="b"/>
<xsl:value-of select="%a+38b"/>
</xsl:template>
This example defines named template add, which takes two parameters a and b. The purspose of this
template is to add two arguments taken and produce the result to output. Arguments can then be passed to
template using <with-param> element during template call.
<xsl:call-template name="add ">
<xsl:with-param name="a"” select="2"/>
<xsl:with-param name="b" select="4"/>
</xsl:call-template>

Page| 20

This code calls template add with parameters 2 and 4. If this XSLT applied to XML document the
output will be 6. The scope of forrmal is with in the template only. XSLT allows to declare anduse
variable. Consider the following code:

<xsl:template>

<xsl:variable name="a">4</xsl:variable>

<xsl:variable name="b"> 6</xsl:variable>

<xsl:value-of select="%a+8b"/>
</xsl:template>

6. Conditional Processing:

There are two types of branching constructs in XSLT: <if> and <choose>

XSLT <if> element has attribute test, which takes Boolean expression. If the effective Boolean
value of this expression is evaluated to true, the action under <if> construct is followed. The general syntax
of <if> construct is as follows:

<xsl:if test="condition ">

</xsl:if>
The following extracts information about only that book having title as “Web Technologies”:
<xsl:template match="//book”>
<xsl:if test="(@title="Web Technologies’ ">
Author: <xsl:value-of select=""(@author”/>
Price: <xsl:value-of select=""(@price”/>
</xsl:if>
</xsl:template>

Using choose:
XSLT <choose> element allows us to select particular condition among set of conditions specified

by <when> element. The general format of <choose> construct is:
<xsl:choose>
<xsl:when text="expressionl ’>..</xsl:when>
<xsl:when text="expression2”>..</xsl:when>

<xsl:when text="expressionN">..</xsl:when>
<xsl:otherwise>...</xsl:otherwise>
</xsl:choose>
Consider the following XML file result.xml, containing marks of different students:
<result>
<student><rollno>01</rollno><marks>80</marks></student>
<student><rollno>02</rollno><marks>70</marks></student>
<student><rollno>03</rollno><marks>60</marks></student>
<student><rollno>04</rollno><marks>55</marks></student>
<student><rollno>05</rollno><marks>77</marks></student>
</result>
The following XSLT document displays results of the students:
<xsl:choose>
<xsl:when test="marks > 80 and marks <= 100">A4 Grade</xsl:when>
<xsl:when test="marks > 70 and marks &lIt;= 80”>B Grade</xsl:when>
<xsl:when test="marks > 60 and marks &It;= 70”>C Grade</xsl:when>
<xsl:when test="marks &It;=60">D Grade</xsl:when>

Page|21

</xsl:choose>

6. Repetition:

XSLT allows <for-each> construct, which can be used to process set of instructions repetedly for
different items in sequence. The attribute select evaluates sequence of nodes. For each of telements in this
sequence, instruction under <for-each> element are processed. Consider the following XML file result.xml,
containing marks of different students:

<result>

<student><rollno>01</rolIno><marks>80</marks></student>
<student><rollno>02</rolIno><marks>70</marks></student>
<student><rollno>03</rollno><marks>60</marks></student>
<student><rollno>04</rolIno><marks>55</marks></student>
<student><rollno>05</rolIno><marks>77</marks></student>

<[result>
The following XSLT document displays results of the students:

<xsl:for-each select="result”>

Roll No: <xsl:value-of select ="rollno”/>

Marks: <xsl:value-of select ="marks”’/>

</xsl:for-each>

Z. Creating nodes and Sequences:

XSLT allows to directly create custom nodes such as element node, text nodes etc. or sequences of
nodes and atomic values that appear in output.
Creating element nodes:

An element node is created using <element> tag. The content of created element is whatever is
generated between the starting and closing of <element> tag. If an element has attributes, they are declared
using <attribute> tag described in the next section.

<xsl:element name="msg ">

Hello world!

</xsl:element>
Create attribute node:

An attributes of an element is created using enclosed <attribute> tag. The mandatory attribute
name specifies name of the generated attributes. The value is indicated by contnent of <attribute> element.

<xsl:element name="msg">

<xsl:attribute name="lang”’>en</xsl:attribute>
Hello world!

</xsl:element>
This code segment creates the element msg with attribute lang as follows:

<msg lang="en"">Hellow World!</msg>
Create text nodes:

Generally, XSLT processor outputs text that appears in the stylesheet. However, extra white spaces
are not provided in such case. Secondaly, special characters such as < and & are represented in text by
escape character sequence &It; and & respectively. For this reason, it provides <text> element to add
literal text to result with following syntax:

<xsl:text> Hello World &</xsl:text>
Creating document node:

XSLT allows to create new document node using <document> element. For example, following
code create temporary document node, which is stored in varaibel named “tempTree”.

<xsl:variable name="tempTree” as ="document-node() ">
<xsl:document> <xsl:apply-templates/> </xsl:document>
</xsl:variable>
Creating processing instructions:

Page |22

Processing instruction is added in the result using <processing-instruction> element. The most
popular use of this element is to insert the <stylesheet> element in output HTML/XML document with
syntax.

<xsl:processing-instruction name="xml-stylesheet”>
<xsl:text> href="sort.xsl” type="text/xsl”</xsl:text>
</xsl:processing-instruction>
7.5 Creating comments:

Comment is added using <comment> element as follows:

<xsl:comment>This is XSLT document</xsl:document>

8. Grouping nodes:

XSLT allows us to group related items based on common values. Consider the following XML document.
<result>
<student><rollno>01</rolIno><marks>80</marks><dept>IT</dept></student>
<student><rollno>02</rolIno><marks>70</marks><dept>IT</dept></student>
<student><rollno>03</rolIno><marks>60</marks><dept>CSE</dept></student>
<student><rollno>04</rolIno><marks>55</marks><dept>IT</dept></student>
<student><rollno>05</rolIno><marks>77</marks><dept>CSE</dept></student>
</result>
The following XSLT document displays results of the students as groups by dept:
<xsl:template match=""/result”>
<xsl:for-each-group select="student” group-by="[@dept ">
<xsl:value-of select="current-grouping-key() ” />
<xsl:for-each select="current-group() >
<xsl:value-of select="@rollno />
</xsl:for-each>
</xsl:template>
This enumerates group items based either on common value of grouping key or pattern specified
by group-by attribute. The current-group() function returns the current group item in the iteration and current-
grouping-key() returns commn key of current group.

9. Sorting nodes:

We can sort group of similar elements using <sort> element. The attributes of the <sort> element
describe how to perform sorting. For example, sorting can be doen alphabetically or numerically or in
increasing or decreating order. The attribute select is used to specify sorting key. The order attribute
specifies order and can have values accending or decending. The type of data to be sorted can be specified
using attribute data-type. Following example sorts list of student respect to their marks.

<table><xsl:for-each select="/result >

<xsl:sort select="marks” data-type="number’/>

<tr><td><xsl:value-of select="rollno ’/></td>

<td><xsl:value-of select="marks /> </td>

<td><xsl:value-of select="dept”/></td></tr>
</xsl:for-each></table>

10. Functions:

XSLT also allows custom functions to be defined in stylesheet. A function is defined using
<function> element. It has attribute name, which specifies the name of the function. Once function is
defined, it can be called from any expressin. The function name must have prefix. This is required to avoid
conflict with any function from default namespace. A prefix can not be bound to reserved namespace.

<xsl:function name=""f:fact”’>

<xsl:param name="n">

Page|23

<xsl:value-of select="if ($n le 1) then I else 3n*f:fact($n-1)"/>
</xsl:function>
<xsl:template match="7">

<xsl:value-of select="f:fact(3) />
< xsl:template>

11. Copying nodes:
The <copy> element copies the current node to the output. If the node is an element node, its

namespace nodes are copied automatically, but attributes and children of element nodes are not copied
automatically. Consider the simple XML document:
<result>
<student><rollno>01</rolIno><marks>80</marks><dept>IT</dept></student>
<student><rollno>02</rollno><marks>70</marks><dept>IT</dept></student>
<student><rollno>03</rolIno><marks>60</marks><dept>CSE</dept></student>
<student><rollno>04</rolIno><marks>55</marks><dept>1T</dept></student>
<student><rollno>05</rolIno><marks>77</marks><dept>CSE</dept></student>
<[result>
Now consider following XSLT document:
<xsl:template match="/student ">
<xsl:copy />
</xsl:template>

12. Numbering:

The <number> element allows to insert and format number into the result tree.
<xsl:template match=""/result”>
<xsl:for-each-group select="student” group-by="[@dept ">
<xsl:number value="position() />
<xsl:value-of select="current-grouping-key() ” />
<xsl:for-each select="current-group() >
<xsl:number value="position() />
<xsl:value-of select="@rollno />
</xsl:for-each>
</xsl:template>

Document Object Model (DOM):

The Document Object Model(DOM) is an application programming interface(API) for HTML and
XML documents. It defines the logical structure of documents and the way a document is accesses and
manipulated. DOM is a set of platform independent and language neutral application programming
interface(API) which describes how to access and manipulate the information stored in XML or in HTML
documents. Main objectives of DOM are Accessing the elements of document, deleting the elements of
documents and changing the elements of document.

DOM models document as hierarchical structure consisting of different kinds of nodes. Each of these
nodes represents specific portion of the document. Some kind of nodes may have children of different types.
Some nodes cannot have anything below it in the hierarchical structure and are leaf nodes. With the
Document Object Model, programmers can build documents, navigate their structure, and add, modify, or
delete elements and content. Anything found in an HTML or XML document can be accessed, changed,
deleted, or added using the document object model. The DOM is separated into 3 different parts/levels:

1. Core DOM: standard model for any structured document.

2. HTML DOM:standard model for HTML documents.

3. XML DOM: standard model for XML documents.

1. Core DOM:

Page| 24

This portion defines the basic set of interfaces and objtects for any structured document.
2. HTML DOM:

The HTML Document Object Model (DOM) is a programming APl for HTML documents. It defines
the logical structure of documents and the way a document is accessed and manipulated. With the Document
Object Model, programmers can create and build documents, navigate their structure, and add, modify, or
delete elements and content. Anything found in an HTML document can be accessed, changed, deleted, or
added using the Document Object Model, with a few exceptions - in particular, the DOM interfaces for the
internal subset and external subset have not yet been specified.

<TABLE>
<ROWS>
<TR>
<TD>Shady Grove</TD>
<TD>Aeolian</TD>
</TR>
<TR>
<TD=>Over the River, Charlie</TD>
<TD=>Dorian</TD>
</TR>
</ROWS>
</TABLE>

3. XML DOM:

According to the DOM, everything in an XML document is a Node. The DOM says: The entire
document is a document node, Every XML element is an element node, The text in the XML elements are
text nodes, Every attribute is an attribute node, Comments are comment nodes.

<bookstore>

<book category="cooking ">

<title lang="en"">Everday Italian</title>
<author>Giada De Laurentiis</author
<year>2005</year>
<price>30.00</price>

</book>

</bookstore>

The root node in the XML above is named <bookstore>. All other nodes in the document are
contained within <bookstore>. The root node <bookstore> holds four <book> nodes. The first <book> node
holds four nodes: <title>, <author>, <year>, and <price>, which contains one text node each, "Everyday
Italian”, "Giada De Laurentiis", "2005", and "30.00". The XML DOM views an XML document as a tree-
structure. The tree structure is called a node-tree. All nodes can be accessed through the tree. Their contents
can be modified or deleted, and new elements can be created.

The node tree shows the set of nodes, and the connections between them. The tree starts at the root
node and branches out to the text nodes at the lowest level of the tree. The nodes in the node tree have a
hierarchical relationship to each other. The terms parent, child, and sibling are used to describe the
relationships. Parent nodes have children. Children on the same level are called siblings (brothers or sisters).
In a node tree, the top node is called the root, Every node except the root has exactly one parent node, A

Page| 25

node can have any number of children, A leaf is a node with no children, Siblings are nodes with the same
parent.

Using XML processors:
Parsing XML refers to going through XML document to access data or to modify data in one or other

way. XML Parser provides way how to access or modify data present in an XML document. Java provides
multiple options to parse XML document. Following are various types of parsers which are commonly used
to parse XML documents.
o Dom Parser: Parses the document by loading the complete contents of the document and creating its
complete hiearchical tree in memory.
e SAX Parser: Parses the document on event based triggers. Does not load the complete document
into the memory.
Difference between DOM and SAX:

DOM SAX
DOM is a tree based parsing method SAX is an event based parsing method
We can insert or delete a node We can insert or delete a node
Traverse in any direction Top to bottom traversing

Stores the entire XML document in to memory | Parses node by node
before processing

Occupies more memory Doesn’t store the XML in memory
DOM preserves comments SAX doesn’t preserve comments.
import javax.xml.parsers.*; import javax.xml.sax.*;

import org.w3c.dom.*; import org.xml.sax.helpers.*;

1. Java DOM Parser:

The Document Object Model is an official recommendation of the World Wide Web Consortium
(W3C). It defines an interface that enables programs to access and update the style, structure,and contents of
XML documents. XML parsers that support the DOM implement that interface. In order to use this, we need
to know a lot about the structure of a document, need to move parts of the document around and need to
use the information in the document more than once. When we parse an XML document with a DOM
parser, we get back a tree structure that contains all of the elements of your document. The DOM provides a
variety of functions you can use to examine the contents and structure of the document.

DOM interfaces:
The DOM defines several Java interfaces. Here are the most common interfaces:
e Node: The base datatype of the DOM.
« Element: The vast majority of the objects you'll deal with are Elements.
e Attr: Represents an attribute of an element.
e Text: The actual content of an Element or Attr.
o Document: Represents entire XML document, a Document object is often referred to as a DOM
tree.
Common DOM methods:
When you are working with the DOM, there are several methods you'll use often:
e Document.getDocumentElement() - Returns the root element of the document.
e Node.getFirstChild() - Returns the first child of a given Node.
e Node.getLastChild() - Returns the last child of a given Node.
« Node.getNextSibling() - These methods return the next sibling of a given Node.
« Node.getPreviousSibling() - These methods return the previous sibling of a given Node.
« Node.getAttribute(attrName) - For a given Node, returns the attribute with the requested name.

Steps to Use DOM parser:
Following are the steps used while parsing a document using DOM Parser.

Page| 26

1. Import XML-related packages
import org.w3c.dom.*;
import javax.xml.parsers.*;
import java.io.*;
2. Create a DocumentBuilder
DocumentBuilderFactory factory =DocumentBuilderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
3. Create a Document from a file or stream
StringBuilder strb = new StringBuilder();
strb.append("'<?xml version="1.0"?> <bookstore> </bookstore>");
ByteArraylnputStream input = new ByteArraylnputStream(strb.toString().getBytes("UTF-8"));
Document doc = builder.parse(input);
4. Extract the root element
Element root = document.getDocumentElement();
5. Examine attributes
getAttribute("attributeName");
getAttributes();
6. Examine sub-elements
getElementsByTagName("'subelementName");
getChildNodes();

Example for using of DOM parser:
class.xml
<?xml version="1.0"?>
<class>
<student rollno="393">
<firsthame>dinkar</firstname>
<lastname>kad</lasthame>
<nickname>dinkar</nickname>
<marks>85</marks>
</student>
<student rollno="493">
<firsthame>Vaneet</firstname>
<lastname>Gupta</lastname>
<nickname=>vinni</nickname>
<marks>95</marks>
</student>
</class>
DomParserDemo.java
import java.io.File;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import org.w3c.dom.Element;
public class DomParserDemo

{
public static void main(String[] args){

try {
File inputFile = new File("input.txt");

Page |27

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newlinstance();
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(inputFile);
doc.getDocumentElement().normalize();

System.out.printIn("Root element :" + doc.getDocumentElement().getNodeName());
NodeList nList = doc.getElementsByTagName("'student");

System.out.printin(" ");
for (int temp = 0; temp < nList.getLength(); temp++)
{ Node nNode = nList.item(temp);

System.out.printin("\nCurrent Element :" + nNode.getNodeName());

if (nNode.getNodeType() == Node.ELEMENT_NODE)

{ Element eElement = (Element) nNode;

System.out.printIn(Student roll no : " + eElement.getAttribute("rollno™));

System.out.printIn("First Name
"+eElement.getElementsByTagName("firstname™).item(0). getTextContent())
System.out.printIn(Last Name
eElement.getElementsByTagName(*'lasthame™).item(0). getTextContent())
System.out.printIn("Nick Name
"+eElement.getElementsByTagName("'nickname™).item(0).getTextContent());
System.out.printin("Marks : " +eElement.getElementsByTagName("marks").item(0).getTextContent());

}
} catch (Exception e) { e.printStackTrace(); }
}
}

2. Java SAX Parser:

SAX (the Simple API for XML) is an event-based parser for xml documents.Unlike a DOM parser, a
SAX parser creates no parse tree. SAX is a streaming interface for XML, which means that applications
using SAX receive event notifications about the XML document being processed an element, and attribute,
at a time in sequential order starting at the top of the document, and ending with the closing of the ROOT
element. Reads an XML document from top to bottom, recognizing the tokens that make up a well-formed
XML document. Tokens are processed in the same order that they appear in the document. Reports the
application program the nature of tokens that the parser has encountered as they occur. The application
program provides an "event" handler that must be registered with the parser. As the tokens are identified,
callback methods in the handler are invoked with the relevant information

ContentHandler Interface
This interface specifies the callback methods that the SAX parser uses to notify an application program of
the components of the XML document that it has seen.
« void startDocument() - Called at the beginning of a document.
« void endDocument() - Called at the end of a document.
« void startElement(String uri, String localName, String gName, Attributes atts) - Called at the
beginning of an element.
« void endElement(String uri, String localName,String gName) - Called at the end of an element.
« void characters(charf[] ch, int start, int length) - Called when character data is encountered.
« void ignorableWhitespace(char[] ch, int start, int length) - Called when a DTD is present and
ignorable whitespace is encountered.
« void processinglnstruction(String target, String data) - Called when a processing instruction is
recognized.

Page| 28

« void setDocumentLocator(Locator locator)) - Provides a Locator that can be used to identify
positions in the document.
« void skippedEntity(String name) - Called when an unresolved entity is encountered.
« void startPrefixMapping(String prefix, String uri) - Called when a new namespace mapping is
defined.
« void endPrefixMapping(String prefix) - Called when a namespace definition ends its scope.
Attributes Interface
This interface specifies methods for processing the attributes connected to an element.
e intgetLength() - Returns number of attributes.
o String getQName(int index)
e String getValue(int index)
e String getValue(String gname)

Example for using of SAX parser:
class.xml
<?xml version="1.0"?>
<class>
<student rollno="393">
<firstname>dinkar</firstname>
<lastname>kad</lasthame>
<nickname>dinkar</nickname>
<marks>85</marks>
</student>
<student rollno="493">
<firsthame>Vaneet</firstname>
<lastname>Gupta</lastname>
<nickname=>vinni</nickname>
<marks>95</marks>
</student>
</class>
SAXParserDemo.java
import java.io.File;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class SAXParserDemo {
public static void main(String[] args){
try {
File inputFile = new File("input.txt");
SAXParserFactory factory = SAXParserFactory.newlnstance();
SAXParser saxParser = factory.newSAXParser();
UserHandler userhandler = new UserHandler();
saxParser.parse(inputFile, userhandler);
} catch (Exception e) { e.printStackTrace(); }
}
}

class UserHandler extends DefaultHandler {
boolean bFirstName = false;

Pagel 29

boolean bLastName = false;
boolean bNickName = false;
boolean bMarks = false;
public void startElement(String uri, String localName, String gqName, Attributes attributes)
throws SAXException {
if (QName.equalsignoreCase('student"))
{ String rolINo = attributes.getValue("'rollno™);
System.out.printin(*Roll No : " + rolINo);
}

else if (QName.equalslgnoreCase("'firstname))

{ bFirstName = true; }

else if (QName.equalslgnoreCase("lastname™))

{ bLastName = true; }

else if (QName.equalsignoreCase(""nickname™))

{ bNickName = true; }

else if (QName.equalsignoreCase("'marks"))

{ bMarks = true; }
}
public void endElement(String uri, String localName, String gName) throws SAXException {

if (JName.equalsignoreCase("'student"))

{ System.out.printin("End Element :" + qName); }

}

public void characters(char ch[], int start, int length) throws SAXException {

if (bFirstName) {
System.out.printIn("First Name: " + new String(ch, start, length));
bFirstName = false;

} else if (bLastName) {
System.out.printIn("Last Name: " + new String(ch, start, length));
bLastName = false;

} else if (obNickName) {
System.out.printin("Nick Name: " + new String(ch, start, length));
bNickName = false;

} else if (bMarks) {
System.out.printin("Marks: "+ new String(ch, start, length));
bMarks = false;

}

AJAX (Asynchronous JavaScript and XML)

AJAX is an acronym for Asynchronous JavaScript and XML. It is a group of inter-related
technologies like javascript, dom, xml, html, css etc. AJAX allows you to send and receive data
asynchronously without reloading the entire web page. So it is fast.

AJAX allows you to send only important information to the server not the entire page. So only
valuable data from the client side is routed to the server side. It makes your application interactive and
faster.

Where it is used?

There are too many web applications running on the web that are using AJAX Technology. Some
are:

Gmail
Facebook
Twitter
Google maps
YouTube etc.,

IS

Synchronous Vs. Asynchronous Application

Before understanding AJAX, let’s understand classic web application model and AJAX Web

application model.

Synchronous (Classic Web-Application Model)
A synchronous request blocks the client until operation completes i.e. browser is not
unresponsive. In such case, JavaScript Engine of the browser is blocked.

As you can see in the above image, full page is refreshed at request time and user is
blocked until request completes. Let's understand it another way.

Asynchronous (AJAX Web-Application Model)
An asynchronous request doesn’t block the client i.e. browser is responsive. At that time, user
can perform other operations also. In such case, JavaScript Engine of the browser is not blocked.

As you can see in the above image, full page is not refreshed at request time and user gets
response from the AJAX Engine. Let's try to understand asynchronous communication by the
image given below.

AJAX Technologies

AJAX is not a Technology but group of inter-related technologies. AJAX Technologies includes:
* HTML/XHTML and CSS

DOM

XML or JSON(JavaScript Object Notation)

XMLHttpRequest

JavaScript

o<

P>

3

o

3

o

o3

HTML/XHTML and CSS
These technologies are used for displaying content and style. It is mainly used for
presentation.

DOM
It is used for dynamic display and interaction with data.

XML or JSON
For carrying data to and from server. JSON is like XML but short and faster than XML.

XMLHttpRequest
For asynchronous communication between client and server.

Unit-3 AJAX
e JavaScript

It is used to bring above technologies together. Independently, it is used mainly for client-side
validation.

Understanding XMLHttpRequest
An object of XMLHttpRequest is used for asynchronous communication between client and
server. It performs following operations:
1. Sends data from the client in the background
2. Receives the data from the server
3. Updates the webpage without reloading it.

e Properties of XMLHttpRequest object:

Property Description
onReadyStateChange | It is called whenever readystate attribute changes. It must not be
used with synchronous requests.
readyState Represents the state of the request. It ranges from 0 to 4.
0 UNOPENED open() is not called.
1 OPENED open is called but send() is not called.
2 HEADERS_RECEIVED send() is called, and headers and
status are available.
3 LOADING Downloading data; responseText holds the data.
4 DONE The operation is completed fully.
reponseText Returns response as TEXT.
responseXML Returns response as XML
Method Description
void open(method, URL) Opens the request specifying get or post method
and url.
void open(method, URL, async) Same as above but specifies asynchronous or not.
void open(method, URL, async, Same as above but specifies username and
username, password) password.
void send() Sends GET request.
void send(string) Sends POST request.
setRequestHeader(header,value) It adds request headers.

User sends a request from the Ul and a javascript call goes to XMLHttpRequest object.
HTTP Request is sent to the server by XMLHttpRequest object.

Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

Data is retrieved.

Server sends XML data or JSON data to the XMLHttpRequest callback function.
HTML and CSS data is displayed on the browser.

ocukhwnrE

Unit-3 AJAX

Integrating PHP and AJAX:-

The following example will demonstrate how a web page can communicate with a web server
while a user type characters in an input field:

Example

Start typing a name in the input field below:

First name:

Suggestions:

Example Explained

In the example above, when a user types a character in the input field, a function called
"showHint()" is executed.

The function is triggered by the onkeyup event.

Here is the HTML code:

Example

<html>
<head>
<script>
function showHint(str) {
if (str.length ==0) {
document.getElementByld("txtHint").innerHTML = ""

return;
} else

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
document.getElementByld("txtHint").innerHTML = this.responseText;
}
j
xmlhttp.open("GET", "gethint.php?q=" + str, true);
xmlhttp.send();
}
}
</script>
</head>
<body>

<p>Start typing a name in the input field below:</p>
<form>

First name: <input type="text" onkeyup="showHint(this.value)">
</form>

<p>Suggestions: </p>

</body>

</html>

Code explanation:

First, check if the input field is empty (str.length == 0). If it is, clear the content of the txtHint
placeholder and exit the function.

However, if the input field is not empty, do the following:

Create an XMLHttpRequest object

Create the function to be executed when the server response is ready
Send the request off to a PHP file (gethint.php) on the server

Notice that q parameter is added to the url (gethint.php?g="+str)
And the str variable holds the content of the input field

The PHP File - ""gethint.php**

The PHP file checks an array of names, and returns the corresponding name(s) to the
browser:

<?php

/I Array with names
$a[] = "Anna";

$a[] = "Brittany";
$a[] = "Cinderella";

$a[] = "Diana™;
$a[] = "Eva";
$a[] = "Fiona™;
$a[] = "Gunda™;
$a[] = "Hege";
$a[] = "Inga";

$a[] = "Johanna";

$a[] = "Kitty";

$a[] = "Linda";
$a[] = "Nina";
$a[] = "Ophelia™;

$a[] = "Petunia™;
$a[] = "Amanda";

$a[] = "Raquel";
$a[] = "Cindy";
$a[] = "Doris";
$a[] = "Eve";
$a[] = "Evita";
$a[] = "Sunniva";
$a[] ="Tove";
$a[] ="Unni";
$a[] = "Violet";
$a[] = "Liza";
$a[] = "Elizabeth™;
$a[] = "Ellen™;
$a[] = "Wenche";
$a[] = "Vicky";

/I get the g parameter from URL
$9 =% REQUEST["q"];

$hint =",

/' lookup all hints from array if $q is different from "
if ($q 1=="") {
$q = strtolower($q);
$len=strlen($q);
foreach($a as $name) {
if (stristr($q, substr($name, 0, $len))) {
if ($hint ==="") {
$hint = $name;
}else {
$hint .=", $name";
}
}
}
}

// Output "no suggestion™ if no hint was found or output correct values
echo $hint ==="" ? "no suggestion™ : $hint;
7”>

Introduction to Web Services

Technology keep on changing, users were forces to learn new application on continuous basis.
With internet, focus is shifting to-wards services based software. Users may access these services using
wide range of devices such as PDAs, mobile phones, desktop computers etc. Service oriented software
development is possible using man known techniques such as COM, CORBA, RMI, JINI, RPC etc. some
of them are capable of delivering services over web & some or not. Most of these technologies uses
particular protocols for communication & with no standardization. Web service is the concept of creating
services that can be accessed over web. Most of these

What are Web Services?

A web services may be defines as: An application component accessible via standard web
protocols. It is like unit of application logic. It provides services & data to remote clients & other
applications. Remote clients & application access web services with internet protocols. They use XML for
data transport & SOAP for using services. Accessing service is independent of implementation. With
component development model, web service must have following characteristics:

* Registration with lookup service
Public interface for client to invoke service

R
o<

/7
0‘0

It should use standard web protocols for communication
It should be accessible over web

e

A

o3

It should support loose coupling between uncoupled distributed systems

Web services receive information from clients as messages, containing instructions about what client
wants, similar to method calls with parameters. These message delivered by web services are encoded
using XML.XML enabled web services are interoperable with other web services.

Web Service Technologies:
Wide variety of technologies supports web services. Following technologies are available
for creation of web services. These are vendor neutral technologies. They are:
Simple Object Access Protocol(SOAP)
Web Services Description Language(WSDL)

>

RS RS
DR

UDDI(Universal Description Discovery and Integration)

Simple Object Access Protocol (SOAP):

SOAP is a light weight & simple XML based protocol. It enables exchange of structured & typed
information on web by describing messaging format for machine to machine communication. It also
enab!gs creation of web services based on open infrastructure. SOAP consists of three parts:

SOAaP Envelope: defines what is in message, who is the recipient, whether message is optional or
mandatory

SOAP Encoding Rules: defines set of rules for exchanging instances of application defined data types

SOAP RPC Representation: defines convention for representing remote procedure calls & response

SOAP can be used in combination with variety of existing internet protocols & formats including
HTTP, SMTP etc. Typical SOAP message is shown below:
<IVORY:Envelope xmlns:IVOR Y= "http://schemas.xmlsoap.org/soap/envelope ”
IVORY:encodingStyle="http://schemas.xmlsoap.org/soap/encoding ">
<IVORY:Body>
<m:GetLastTradePrice xmins:m="Some-URI ">
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</IVORY:Body>
</IVORY:Envelope>

The consumer of web service creates SOAP message as above, embeds it in HTTP POST request
& sends it to web service for processing:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml;
charset=""utf-8"

Content-Length: nnnn
SOAPAction: “Some-URI”

SOAP Meséage

THe message now contains requested stock price. A typical returned SOAP message may look like
following:

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http:lIschemas.xmisoap.org/soap/envelope”’
SOAP-ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding ” />
<SOAP-ENV:Body>
<m:GetLastTradePrice xmins:m="Some-URI ">
<Price>34.5</Price>
</m:GetlLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Interoperability:

The major goal in design of SOAP was to allow for easy creation of interoperable distributed web
services. Few details of SOAP specifications are open for interpretation; implementation may differ across
different vendors. SOAP message though it is conformant XML message, may not strictly follow SOAP
specification.

Implementations:

SOAP technology was developed by DevelopMentor, IBM, Lotus, Microsoft etc. More than 50
vendors have currently implemented SOAP. Most popular implementations are by Apache which is open
source java based implementation & by Microsoft in .NET platform. SOAP specification has been
submitted to W3C, which is now working on new specifications called XMLP (XML Protocol)

SOAP Messages with Attachments (SwA)

SOAP can send message with an attachment containing of another document or image etc. On
Internet, GIF, JPEG data formats are treated as standards for image transmission. Second iteration of
SOAP specification allowed for attachments to be combined with SOAP message by using multipart

http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://www.stockquoteserver.com/
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding

MIME structure. This multi part structure is called as SOAP Message Package. This new specification
was developed by HP & Microsoft. Sample SOAP message attachment is shown here:
MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
type=text/xml; start=""<myimagedoc.xml@mystie.com>"
Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-1D: <myimagedoc.xml@mysite.com>
<SOAP-ENV: Envelope xmIns:SOAP-ENV= "http://schemas.xmlsoap.org/soap/envelope”
<SOAP-ENV:Body>

<theSignedForm href="cid:myimage.tiff@mysite.com” />

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <myimagedoc.xml@mysite.com>
...binary TIFF image...
--MIME_boundary--

Web Services Description Language (WSDL)

WSDL is an XML format for describing web service interface. WSDL file defines set of
operations permitted on the server & format that client must follow while requesting service. WSDL file
acts like contract between client & service for effective communication between two parties. Client has to
request service by sending well formed & conformant SOAP request.

If we are creating web service that offered latest stock quotes, we need to create WSDL file on
server that describes service. Client obtains copy of this file, understand contract, create SOAP request
based on contract & dispatch request to server using HTTP post. Server validates the request, if found
valid executes request. The result which is latest stock price for requested symbol is then returned to client
as SOAP response.

WSDL Document:
WSDL document is an XML document that contains of set of definitions. First we declare
name spaces required by schema definition:
<schema xmins= "http.//www.w3.0rg/2000/10/XMLSchema”’
xmlins:wsdl= "hrtp://schemas.xmlsoap.org/wsdl/
targetNameSpace=nhttp://schemas.xmlsoap.org/wsdl/ elementFormDefault="qualified >

The root element is definitions as shown below:
<wsdl:defiinitions name="nmtoken”? targetNameSpace="uri”?>
<import namespace="uri” location="uri”/>
<wsdl:documentation />?

<lwsdl:d.é.finitions>

The name attribute is optional & can serve as light weight form of documentation. The nmtoken
represents name token that are qualified strings similar to CDATA, but character usage is limited to letters,
digits, underscores, colons, periods & dashes. A targetNamespace may be specified by providing uri. The
import tag may be used to associate namespace with document locations. Following code segment shows
how declared namespace is associated with document location specified in import statement:

<definitions name="StockQuote”

targetNameSpace= "http://example.com/stockquote/defiinitions”

mailto:myimagedoc.xml@mystie.com
mailto:myimagedoc.xml@mysite.com
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/envelope
mailto:myimage.tiff@mysite.com
mailto:myimage.tiff@mysite.com
mailto:myimagedoc.xml@mysite.com
http://www.w3.org/2000/10/XMLSchema
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/defiinitions
http://example.com/stockquote/defiinitions

xmlins:tns="http.//example.com/stockquote/definitions”

xmlins:xsdl="http://example.com/stockquote/schemas ”
xmlnS:Soap="hﬂﬁ.'//vchemas.xmlsoa .org/wsdl/soap/ "
xmins="http://schemas.xmlsoap.org/wsdl/ ">

<import namespace= "http://example.com/stockquote/schemas
Location="http:/lexample.com/stockquote/stockquote.xsd "/>

Finally, optional wsdl:documentation element is wused for declaring human readable
documentation. The element may contain any arbitrary text. There are six major elements in document
structure that describes service. These are as follows:

0
0’0

Types Element: it provides definitions for data types used to describe how messages will
exchange data. Syntax for types element is as follows:

<wsdl:types> ?
<wsdl:documentation
.../> <xsd:schema .../>
<-- extensibility element -->
</wsdl:types>

The wsdl:documentation tag is optional as in case of definitions. The xsd type system may be used
to define types in message. WSDL allows type systems to be added via extensibility element.

Message Element: It represents abstract definition of data begin transmitted. Syntax for message element:

<wsdl:message name="nktoken "> *
<wsdl;documentation .../>
<part name="nmtoken” element="qname”? type="qname”? /> *
</wsdl:message>

The message name attribute is used for defining unique name for message with in
document scope. The wsdl:documentation is optional & may be used for declaring human
readable documentation. The message consists of one or more logical parts. The part describes
logical abstract content of message. Each part consists of name & optional element & type
attributes.\

%

¢

Port Type Element: It defines set of abstract operations. An operation consists of both input &
output messages. The operation tag defines hame of operation, input defines input for operation &
outFut defines output format for result. The fault element is used for describing contents of SOAP
fault details element. It specifies abstract message format for error messages that may be output as
result of operation:

<wsdl:portType name="nmtoken" > *
<wsdl:documentation/>?
<wsdl:operation name="nmtoken "> *
<wsdl:documentation/>?
<wsdl:input name="nmtoken”’? message="qname”’>?
<wsdl:documentation/>?
</wsdl:input>
<wsdl:output name="nmtoken”? message="qname”’>?
<wsdl:documentation/>?
</wsdl:output>
<wsdl.fault name="nmtoken”? message="qname"’>?
<wsdl:documentation/>?
</wsdl:fault>
</wsdl:operation>
</wsdl:portType>

®
0.0

Binding Element: It defines protocol to be used & specifies data format for operations & messages defined
by particular portType. The full syntax for binding is given below:

http://example.com/stockquote/definitions
http://example.com/stockquote/definitions
http://example.com/stockquote/schemas
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote/schemas
http://example.com/stockquote/schemas
http://example.com/stockquote/stockquote.xsd
http://example.com/stockquote/stockquote.xsd
http://example.com/stockquote/stockquote.xsd

<wsdl:binding name="nmtoken” type="qname "> *
<wsdl:documentation/>?
<--Extensibility element -->*

<wsdl:operation name="nmtoken">*
<wsdl:documentation/>?
<--Extensibility element -->*

<wsdl:input> ?
<wsdl:documentation/>?
<--Extensibility element -->*

</wsdl:input>

<wsdl:output> ?
<wsdl:documentation/>?
<--Extensibility element -->*

</wsdl:output>

<wsdl:fault name="nmtoken”’> *
<wsdl:documentation/>?
<--Extensibility element -->*

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

The operation in WSDL file can be document oriented or remote procedure call (RPC)
oriented. The style attribute of <soap:binding> element defines type of operation. If operation is
document oriented, input & output messages will consist of XML documents. If operation is RPC
oriented, input message contains operations input parameters & output message contains result of
operation.

3

Port Element: It defines individual end point by specifying single address for binding:

<wsdl:port name="nmtoken " binding="gname > *

<--Extensibility element (1) -->
</wsdl:port>

The name attribute defines unique name for port with current WSDL document. The binding
a}tribute refers to binding & extensibility element is used to specify address information for port.
0‘0

Service Element: it aggregates set of related ports. Each port specifies address for binding:
<wsdl:service name="nmtoken "> *

<wsdl:documentation/>?

<wsdl:port name="nktoken” binding="qname "> *
<wsdl:documentation .../> ?
<--Extensibility element -->

</wsdl:port>
<--Extensibility element -->

</wsdl:service>

Universal Description, Discovery & Integration (UDDI)

We need to publish web services so that customers & business partners can use the services. It
requires common registry to register web service for clients to find it. For this several vendors including
IBM, HP, Oracle, Sun Microsystem etc. formed an industry consortium known as UDDI. Today more than
250 companies have joined UDDI project. The main task of this project is to develop specifications for
web based business registry. The registry should be able to describe web service & allow others to discover
registered web services.

UDDI allows any organization to publish information about its web services. The framework
defines standard for businesses to share information, describe their services & their business & to decide
what information is made public & what information is kept private. The interface is based on XML &
SOAP, uses HTTP to interact with registry.

Unit-3 AJAX
Registry itself holds information about business such as company name, contact etc. it holds both

descriptive & technical information about web service. It provides search facilities that allow to search
specific industry segment or geographic location.

Implementation:

This is global, public registry called UDDI business registry. It is possible for individuals to set up
private UDDI registries. The implementations for creating private registries are available from IBM, ldoox
etc. Microsoft has developed UDDI SDK that allows visual basic programmer to write program code to
interact with UDDI registry. The use of SDK greatly simplifies interaction with registry & shields
programmer from local level details of XML & SOAP.

Electronic Business XML (ebXML):

ebXML is set of specifications that allows businesses to collaborate. It enables global electronic
market place where business can meet & tranasact with help of XML based messages. Business may be
geographically located anywhere in world & could be of any size to participate in global marketplace. The
framework defines specifications for sharing of web based business services. It includes specifications for
message service, collaborative partner agreements, core components, business process methodology,
registry & repository.

It defines registry & repository where business can register themselves by providing their contact
information, address & so on. Such information is called Core Component. After business has registered
with ebXML registry, other partners can look up registry to locate that business. Once business partner is
located, the core components of located business are downloaded. Once buyer is satisfied with fact that
seller service can meet its requirements, it negotiates contract with seller. Such collaborative partner
agreements are defined in ebXML. Once both parties agree on contract terms, sign agreements &
collaborative business transaction by exchanging their private documents. ebXML provides marketplace &
defines several XML based documents for business to join & transact in such marketplace.

Web Technologies

UNIT-1V

What You Should Already Know

Before you continue you should have a basic understanding of the following:

¢« HTML
e JavaScript

What is PHP?

PHP stands for PHP: Hypertext Preprocessor

PHP is a widely-used, open source scripting language
PHP scripts are executed on the server

PHP is free to download and use

What is a PHP File?

o PHP files can contain text, HTML, JavaScript code, and PHP code

o PHP code are executed on the server, and the result is returned to the browser as plain
HTML

o PHP files have a default file extension of ".php"

What Can PHP Do?

PHP can generate dynamic page content

PHP can create, open, read, write, and close files on the server
PHP can collect form data

PHP can send and receive cookies

PHP can add, delete, modify data in your database

PHP can restrict users to access some pages on your website
PHP can encrypt data

With PHP you are not limited to output HTML. You can output images, PDF files, and even
Flash movies. You can also output any text, such as XHTML and XML.

Why PHP?

PHP runs on different platforms (Windows, Linux, Unix, Mac OS X, etc.)
PHP is compatible with almost all servers used today (Apache, 11S, etc.)
PHP has support for a wide range of databases

PHP is free. Download it from the official PHP resource: www.php.net
PHP is easy to learn and runs efficiently on the server side

http://www.php.net/

What Do | Need?

To start using PHP, you can:

e Find a web host with PHP and MySQL support
« Install a web server on your own PC, and then install PHP and MySQL

Use a Web Host With PHP Support

If your server has activated support for PHP you do not need to do anything.

Just create some .php files, place them in your web directory, and the server will
automatically parse them for you.

You do not need to compile anything or install any extra tools.

Because PHP is free, most web hosts offer PHP support.

Set Up PHP on Your Own PC

However, if your server does not support PHP, you must:

o install a web server
e install PHP
« install a database, such as MySQL

The official PHP website (PHP.net) has installation instructions for PHP:
http://php.net/manual/en/install.php

The PHP script is executed on the server, and the plain HTML result is sent back to the
browser.

Basic PHP Syntax

A PHP script always starts with <?php and ends with ?>. A PHP script can be placed
anywhere in the document.

On servers with shorthand-support, you can start a PHP script with <? and end with ?>.

For maximum compatibility, we recommend that you use the standard form (<?php) rather
than the shorthand form.

<?php
/I PHP code goes here
”>

http://php.net/manual/en/install.php

The default file extension for PHP files is ".php".
A PHP file normally contains HTML tags, and some PHP scripting code.

Below, we have an example of a simple PHP script that sends the text "Hello World!" back to
the browser:

Example

<IDOCTYPE htmil>
<htmi>
<body>

<?php
echo "Hello World!™;

»>

</body>
</html>

Show example »

Each code line in PHP must end with a semicolon. The semicolon is a separator and is used
to distinguish one set of instructions from another.

There are two basic statements to output text with PHP: echo and print.

In the example above we have used the echo statement to output the text "Hello World".

Comments in PHP

In PHP, we use // to make a one-line comment, or /* and */ to make a comment block:

Example

<IDOCTYPE html>
<html>
<body>

<?php
/IThis is a comment

/*

This s

a comment
block

*/

»>

http://www.w3schools.com/php/showphp.asp?filename=demo_syntax

</body>
</html>

Variables are "containers” for storing information.

Do You Remember Algebra From School?

Do you remember algebra from school? x=5, y=6, z=x+y

Do you remember that a letter (like x) could be used to hold a value (like 5), and that you
could use the information above to calculate the value of z to be 11?

These letters are called variables, and variables can be used to hold values (x=5) or
expressions (z=x+y).

PHP Variables

As with algebra, PHP variables are used to hold values or expressions.
A variable can have a short name, like x, or a more descriptive name, like carName.
Rules for PHP variable names:

o Variables in PHP starts with a $ sign, followed by the name of the variable

o The variable name must begin with a letter or the underscore character

« A variable name can only contain alpha-numeric characters and underscores (A-z, 0-
9,and)

o A variable name should not contain spaces

o Variable names are case sensitive (y and Y are two different variables)

Creating (Declaring) PHP Variables

PHP has no command for declaring a variable.

A variable is created the moment you first assign a value to it:

$myCar="Volvo";

After the execution of the statement above, the variable myCar will hold the value Volvo.

Tip: If you want to create a variable without assigning it a value, then you assign it the value
of null.

Let's create a variable containing a string, and a variable containing a number:

<?php

$txt="Hello World!";
$x=16;

»>

Note: When you assign a text value to a variable, put quotes around the value.

PHP is a Loosely Typed Language

In PHP, a variable does not need to be declared before adding a value to it.

In the example above, notice that we did not have to tell PHP which data type the variable is.
PHP automatically converts the variable to the correct data type, depending on its value.

In a strongly typed programming language, you have to declare (define) the type and name of
the variable before using it.

PHP Variable Scope

The scope of a variable is the portion of the script in which the variable can be referenced.
PHP has four different variable scopes:

local
global
static
parameter

Local Scope

A variable declared within a PHP function is local and can only be accessed within that
function. (the variable has local scope):

<?php
$a = 5; // global scope

function myTest()

echo $a; // local scope

¥

myTest();
”>

The script above will not produce any output because the echo statement refers to the local
scope variable $a, which has not been assigned a value within this scope.

You can have local variables with the same name in different functions, because local
variables are only recognized by the function in which they are declared.

Local variables are deleted as soon as the function is completed.

Global Scope

Global scope refers to any variable that is defined outside of any function.

Global variables can be accessed from any part of the script that is not inside a function.
To access a global variable from within a function, use the global keyword:

<?php

$a =5;

$b =10;

function myTest()

{
global $a, $b;
$b = $a + $b;
}

myTest();
echo $b;
2>

The script above will output 15.

PHP also stores all global variables in an array called $GLOBALS[index]. Its index is the
name of the variable. This array is also accessible from within functions and can be used to
update global variables directly.

The example above can be rewritten as this:

<?php
$a=05;
$b =10;

function myTest()

{
$GLOBALS['b] = $GLOBALS['a] + $GLOBALS[bT;

¥

myTest();
echo $b;
7>

Static Scope

When a function is completed, all of its variables are normally deleted. However, sometimes
you want a local variable to not be deleted.

To do this, use the static keyword when you first declare the variable:
static $rememberMe;

Then, each time the function is called, that variable will still have the information it contained
from the last time the function was called.

Note: The variable is still local to the function.

Parameters

A parameter is a local variable whose value is passed to the function by the calling code.
Parameters are declared in a parameter list as part of the function declaration:

function myTest($paral,$para2,...)

{

// function code

¥

Parameters are also called arguments. We will discuss them in more detail when we talk
about functions.

A string variable is used to store and manipulate text.

String Variables in PHP

String variables are used for values that contain characters.

In this chapter we are going to look at the most common functions and operators used to
manipulate strings in PHP.

After we create a string we can manipulate it. A string can be used directly in a function or it
can be stored in a variable.

Below, the PHP script assigns the text "Hello World" to a string variable called $txt:
<?php

$txt="Hello World";

echo $txt;

7>

The output of the code above will be:

Hello World

Now, lets try to use some different functions and operators to manipulate the string.

The Concatenation Operator

There is only one string operator in PHP.

The concatenation operator (.) is used to put two string values together.

To concatenate two string variables together, use the concatenation operator:
<?php

$txt1="Hello World!";

$txt2="What a nice day!";

echo $txtl." " . $txt2;

>

The output of the code above will be:

Hello World! What a nice day!

If we look at the code above you see that we used the concatenation operator two times. This
is because we had to insert a third string (a space character), to separate the two strings.

The strlen() function

The strlen() function is used to return the length of a string.

Let's find the length of a string:

<?php

echo strlen("Hello world!");

7>

The output of the code above will be:

12

The length of a string is often used in loops or other functions, when it is important to know

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character in
the string).

The strpos() function
The strpos() function is used to search for a character/text within a string.

If a match is found, this function will return the character position of the first match. If no
match is found, it will return FALSE.

Let's see if we can find the string "world™ in our string:
<?php

echo strpos(""Hello world!","world");

7”>

The output of the code above will be:

6

The position of the string "world" in the example above is 6. The reason that it is 6 (and not
7), is that the first character position in the string is 0, and not 1.

The assignment operator = is used to assign values to variables in PHP.

The arithmetic operator + is used to add values together.

Arithmetic Operators

The table below lists the arithmetic operators in PHP:

Operator Name Description Example Result

X+y Addition Sumofxandy 2+2 4

X-y Subtraction Difference of x and y 5-2 3

X*y Multiplication Product of x and y 5*2 10

xly Division Quotient of x and y 15/5 3
Remainder of x divided by ° 7 “ 1

X%y Modulus y 10 % 8 2

10% 2 0
- X Negation Opposite of x -2
a.b Concatenation Concatenate two strings ~ "Hi" . "Ha" HiHa

Assignment Operators

The basic assignment operator in PHP is "=". It means that the left operand gets set to the
value of the expression on the right. That is, the value of "$x = 5" is 5.

Assignment Same as...

X=Yy X=Yy
X+=y X=X+Yy
X-=y X=X-Yy
X*=y X=X*y
XIl=y x=xly
X %=y X=X%y
a.=b a=a.b

Description

The left operand gets set to the value of the expression on the

right

Addition

Subtraction
Multiplication

Division

Modulus

Concatenate two strings

Incrementing/Decrementing Operators

Operator Name
++ X

X ++
- X
X__

Description

Pre-increment Increments x by one, then returns x
Post-increment Returns X, then increments x byone
Pre-decrement Decrements x by one, then returns x
Post-decrement Returns X, then decrements x by one

Comparison Operators

Comparison operators allows you to compare two values:

Operator Name

X == Equal

X === Identical

Xl=y Not equal

X<>y Not equal

X 1== Not identical

X>y Greater than

X<y Less than

X>=y Greater than or
equal to

Less than or equal

R

Logical Operators

Operator Name

xandy And

Description

True if x isequal to y

True if x is equal to y, and they
are of same type

True if x is not equal to y

True if x is not equal to y

True if x is not equal to y, or they

are not of same type
True if x is greater than y

True if x is less than y

True if x is greater than or equal
toy

Description

True if both x and y are true

Example
5==8 returns false

5==="5" returns false

51=8 returns true
5<>8 returns true

51=="5" returns true

5>8 returns false
5<8 returns true

5>=8 returns false

True if x is less than or equal to y 5<=8 returns true

Example

X=6

y=3

(x<10andy > 1) returns

xory Or

X Xor 'y Xor

X && Yy And

x|y Or

' x Not
Array Operators
Operator Name

X+y Union
X==y Equality
X===y Identity
Xl=y Inequality
X<>y Inequality

X 1== Non-identity

True if either or both x and y are

true

True if either x or y is true, but

not both

True if both x and y are true

True if either or both x and y are

true

True if X is not true

Description
Union of x and y

true

X=6

y=3

(x==6 or y==5) returns
true

X=6

y=3

(x==6 xor y==3) returns
false

X=6

y=3

(x<10 &&y > 1) returns
true

X=6

y=3

(x==5|| y==D5) returns false
X=6

y=3

I(x==y) returns true

True if x and y have the same key/value pairs

True if x and y have the same key/value pairs in the same

order and of the same types
True if X is not equal to y
True if x is not equal to y

True if x is not identical to y

Conditional statements are used to perform different actions based on different conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for different

decisions.

You can use conditional statements in your code to do this.

In PHP we have the following conditional statements:

o if statement - use this statement to execute some code only if a specified condition is true

o if...else statement - use this statement to execute some code if a condition is trueand
another code if the condition is false

o if...elseif....else statement - use this statement to select one of several blocks of code tobe
executed

e switch statement - use this statement to select one of many blocks of code to be executed

The if Statement

Use the if statement to execute some code only if a specified condition is true.

Syntax
if (condition) code to be executed if condition is true;

The following example will output "Have a nice weekend!" if the current day is Friday:

<html>
<body>

<?php

$d=date("D");

if ($d=="Fri") echo "Have a nice weekend!";
7>

</body>
</html>

Notice that there is no ..else.. in this syntax. The code is executed only if the specified
condition is true.

The if...else Statement

Use the if ...else statement to execute some code if a condition is true and another code if a
condition is false.

Syntax
if (condition)
{

code to be executed if condition is true;

}

else

{

code to be executed if condition is false;

}

Example

The following example will output "Have a nice weekend!" if the current day is Friday,
otherwise it will output "Have a nice day!":

<htmlI>
<body>

<?php

$d=date("D");

if ($d=="Fri")
{

echo "Have a nice weekend!";

¥

else

{

echo "Have a nice day!";

¥

7>

</body>
</html>

The if...elseif....else Statement
Use the if....elseif...else statement to select one of several blocks of code to be executed.

Syntax
if (condition)

{

code to be executed if condition is true;

}

elseif (condition)

{

code to be executed if condition is true;

}

else

{

code to be executed if condition is false;

}

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and
"Have a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice
day!"

<html>
<body>

<?php
$d=date("D");
if ($d=="Fri")
{
echo "Have a nice weekend!";
}
elseif ($d=="Sun")
{

echo "Have a nice Sunday!";

¥

else

{

echo "Have a nice day!";

¥

7>

</body>
</html>

The PHP Switch Statement

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n)

{

case labell:
code to be executed if n=labell;
break;

case label2:
code to be executed if n=label2;
break;

default:
code to be executed if n is different from both labell and label2;

}

This is how it works: First we have a single expression n (most often a variable), that is
evaluated once. The value of the expression is then compared with the values for each case in
the structure. If there is a match, the block of code associated with that case is executed. Use

break to prevent the code from running into the next case automatically. The default
statement is used if no match is found.

Example
<htmlI>
<body>

<?php

$x=1;

switch

($x)

{

case 1:
echo "Number 1";
break;

case 2:
echo "Number 2";
break;

case 3:
echo "Number 3"
break;

default:
echo "No number between 1 and 3";

}

»>

</body>
</html>

An array stores multiple values in one single variable.

What is an Array?

A variable is a storage area holding a number or text. The problem is, a variable will hold
only one value.

An array is a special variable, which can store multiple values in one single variable.

If you have a list of items (a list of car names, for example), storing the cars in single
variables could look like this:

$cars1="Saab";
$cars2="Volvo";
$cars3="BMW";

However, what if you want to loop through the cars and find a specific one? And what if you
had not 3 cars, but 300?

The best solution here is to use an array!

An array can hold all your variable values under a single name. And you can access the
values by referring to the array name.

Each element in the array has its own index so that it can be easily accessed.
In PHP, there are three kind of arrays:

e Numeric array - An array with a numeric index
e Associative array - An array where each ID key is associated with a value
o Multidimensional array - An array containing one or more arrays

Numeric Arrays

A numeric array stores each array element with a numeric index.

There are two methods to create a numeric array.

1. In the following example the index are automatically assigned (the index starts at 0):
$cars=array("Saab","Volvo","BMW","Toyota");

2. In the following example we assign the index manually:

$cars[0]="Saab";
$cars[1]="Volvo";
$cars[2]="BMW";
$cars[3]="Toyota";

Example

In the following example you access the variable values by referring to the array name and
index:

<?php

$cars[0]="Saab";

$cars[1]="Volvo";

$cars[2]="BMW";

$cars[3]="Toyota";

echo $cars[0] . "and " . $cars[1] . " are Swedish cars.";
2>

The code above will output:

Saab and Volvo are Swedish cars.

Associative Arrays
An associative array, each ID key is associated with a value.

When storing data about specific named values, a numerical array is not always the best way
to do it.

With associative arrays we can use the values as keys and assign values to them.
Example 1

In this example we use an array to assign ages to the different persons:

$ages = array("Peter"=>32, "Quagmire"=>30, "Joe"=>34);

Example 2

This example is the same as example 1, but shows a different way of creating the array:
$ages['Peter] = "32";

$ages['Quagmire'] = "30";

$ages['Joe'] = "34";

The ID keys can be used in a script:

<?php

$ages['Peter] = "32";

$ages['Quagmire'] = "30";

$ages['Joe'] = "34";

echo "Peter is " . $ages['Peter'] . " years old.";
7>

The code above will output:

Peter is 32 years old.

Multidimensional Arrays

In a multidimensional array, each element in the main array can also be an array. And each
element in the sub-array can be an array, and so on.

Example

In this example we create a multidimensional array, with automatically assigned ID keys:

$families = array
(
"Griffin"=>arra
y(
"Peter",
"LOiS",
IlMeganll
),
"Quagmire"=>array
(
"Glenn"
),
"Brown"=>arra
y(
"Cleveland"
, "Loretta”,
"Junior"
)
);

The array above would look like this if written to the output:

Arra

y(

[Griffin] =>
Array (
[0] => Peter
[1] => Lois
[2] => Megan
)

[Quagmire] =>
Array (
[0] => Glenn
)

[Brown] =>
Array (
[0] => Cleveland
[1] => Loretta
[2] => Junior
)

)

Example 2
Lets try displaying a single value from the array above:

echo "Is " . $families['Griffin][2]
. " a part of the Griffin family?";

The code above will output:

Is Megan a part of the Griffin family?

Loops execute a block of code a specified number of times, or while a specified condition is
true.

PHP Loops

Often when you write code, you want the same block of code to run over and over again in a
row. Instead of adding several almost equal lines in a script we can use loops to perform a
task like this.

In PHP, we have the following looping statements:

o while - loops through a block of code while a specified condition is true

e do...while - loops through a block of code once, and then repeats the loop as long as a
specified condition is true

o for - loops through a block of code a specified number of times

o foreach - loops through a block of code for each element in an array

The while Loop
The while loop executes a block of code while a condition is true.

Syntax
while (condition)

{

code to be executed;

}

Example
The example below first sets a variable i to 1 ($i=1;).

Then, the while loop will continue to run as long as i is less than, or equal to 5. i will increase
by 1 each time the loop runs:

<html>
<body>

<?php
$i=1;
while($i<=5
)

{

echo "The number is " . $i . "
";
Pi++;
}

>

</body>
</html>

Output:

The number is 1
The number is 2
The number is 3
The number is 4
The number is 5

The do...while Statement

The do...while statement will always execute the block of code once, it will then check the
condition, and repeat the loop while the condition is true.

Syntax
do

{

code to be executed;

}

while (condition);

Example
The example below first sets a variable i to 1 ($i=1;).

Then, it starts the do...while loop. The loop will increment the variable i with 1, and then
write some output. Then the condition is checked (is i less than, or equal to 5), and the loop
will continue to run as long as i is less than, or equal to 5:

<html>
<body>

<?php
$i=1
; do
{
Pi++;
echo "The number is " . $i . "
";

¥

while ($i<=5);
>

</body>
</html>

Output:

The number is 2
The number is 3
The number is 4
The number is 5
The number is 6

Loops execute a block of code a specified number of times, or while a specified condition is
true.

The for Loop
The for loop is used when you know in advance how many times the script should run.

Syntax
for (init; condition; increment)
{

code to be executed;

}

Parameters:

e init: Mostly used to set a counter (but can be any code to be executed once at the beginning
of the loop)

o condition: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues. If
it evaluates to FALSE, the loop ends.

e increment: Mostly used to increment a counter (but can be any code to be executed atthe
end of the iteration)

Note: The init and increment parameters above can be empty or have multiple expressions
(separated by commas).

Example
The example below defines a loop that starts with i=1. The loop will continue to run as long
as the variable i is less than, or equal to 5. The variable i will increase by 1 each time the loop

runs:

<html>
<body>

<?php
for ($i=1; $i<=5; $i++)
{

echo "The number is " . $i . "
";

¥

>

</body>
</html>

Output:

The number is 1
The number is 2
The number is 3
The number is 4
The number is 5

The foreach Loop
The foreach loop is used to loop through arrays.

Syntax
foreach ($array as $value)

{

code to be executed;

}

For every loop iteration, the value of the current array element is assigned to $value (and the
array pointer is moved by one) - so on the next loop iteration, you'll be looking at the next
array value.

Example
The following example demonstrates a loop that will print the values of the given array:

<html>
<body>

<?php
$x=array("one","two","three");
foreach ($x as $value)

{

echo $value . "
";

¥

>

</body>
</html>

Output:
one

two
three

The real power of PHP comes from its functions.

In PHP, there are more than 700 built-in functions.

PHP Built-in Functions

For a complete reference and examples of the built-in functions, please visit our PHP
Reference.

PHP Functions

In this chapter we will show you how to create your own functions.
To keep the script from being executed when the page loads, you can put it into a function.
A function will be executed by a call to the function.

You may call a function from anywhere within a page.

Create a PHP Function
A function will be executed by a call to the function.

Syntax
function functionName()

{

code to be executed;

¥

http://www.w3schools.com/php/default.asp
http://www.w3schools.com/php/default.asp

PHP function guidelines:

e Give the function a name that reflects what the function does
e The function name can start with a letter or underscore (not a number)

Example
A simple function that writes my name when it is called:

<htmlI>
<body>

<?php
function writeName()

{

echo "Kai Jim Refsnes";

¥

echo "My name is ";
writeName();
7>

</body>
</html>

Output:

My name is Kai Jim Refsnes

PHP Functions - Adding parameters

To add more functionality to a function, we can add parameters. A parameter is just like a
variable.

Parameters are specified after the function name, inside the parentheses.
Example 1
The following example will write different first names, but equal last name:

<html>
<body>

<?php
function writeName($fname)

{

echo $fname . " Refsnes.
";

¥

echo "My name is ";
writeName("Kai Jim");

echo "My sister's name is ";
writeName("Hege");

echo "My brother's name is ";

writeName("Stale™);
”>

</body>
</html>

Output:

My name is Kai Jim Refsnes.
My sister's name is Hege Refsnes.
My brother's name is Stale Refsnes.

Example 2

The following function has two parameters:

<html>
<body>

<?php
function writeName($fname,$punctuation)

{

echo $fname . " Refsnes" . $punctuation . "
";

}

echo "My name is ";
writeName("Kai Jim",".");
echo "My sister's name is ";
writeName("Hege","!");
echo "My brother's name is ";
writeName("Stale","?");

>

</body>
</html>

Output:

My name is Kai Jim Refsnes.
My sister's name is Hege Refsnes!
My brother's name is Stale Refsnes?

PHP Functions - Return values
To let a function return a value, use the return statement.

Example
<html>
<body>

<?php
function add($x,$y)

{
$total=$x+3$y
;return
$total;

¥

echo"l +16="".add(1,16);
7>

</body>
</html>

Output:

1+16=17

The PHP $ GET and $_POST variables are used to retrieve information from forms, like
user input.

PHP Form Handling

The most important thing to notice when dealing with HTML forms and PHP is that any form
element in an HTML page will automatically be available to your PHP scripts.

Example
The example below contains an HTML form with two input fields and a submit button:

<htmlI>
<body>

<form action="welcome.php" method="post">
Name: <input type="text" name="fname">

Age: <input type="text" name="age">
<input type="submit">
</form>

</body>
</html>

When a user fills out the form above and clicks on the submit button, the form data is sent to
a PHP file, called "welcome.php™:

"welcome.php™ looks like this:

<html>
<body>

Welcome <?php echo $_POST["fname"];
?>I
 You are <?php echo $ POST["age"]; ?>

years old.

</body>
</html>

Output could be something like this:

Welcome John!
You are 28 years old.

The PHP $_GET and $_POST variables will be explained in the next chapters.

Form Validation

User input should be validated on the browser whenever possible (by client scripts). Browser
validation is faster and reduces the server load.

You should consider server validation if the user input will be inserted into a database. A
good way to validate a form on the server is to post the form to itself, instead of jumping to a
different page. The user will then get the error messages on the same page as the form. This
makes it easier to discover the error.

In PHP, the predefined $_GET variable is used to collect values in a form with
method="get".

The $ GET Variable

The predefined $_GET variable is used to collect values in a form with method="get"

Information sent from a form with the GET method is visible to everyone (it will be
displayed in the browser's address bar) and has limits on the amount of information to send.

Example

<form action="welcome.php" method="get">
Name: <input type="text" name="fname">
Age: <input type="text" name="age">

<input type="submit">

</form>

When the user clicks the "Submit™ button, the URL sent to the server could look something
like this:

http://www.w3schools.com/welcome.php?fname=Peter&age=37

The "welcome.php" file can now use the $_GET variable to collect form data (the names of
the form fields will automatically be the keys in the $_GET array):

Welcome <?php echo $_GET["fname"];
?>.
 You are <?php echo $_GET["age"]; 7>
years old!

When to use method=""get""?

When using method="get" in HTML forms, all variable names and values are displayed in
the URL.

Note: This method should not be used when sending passwords or other sensitive
information!

However, because the variables are displayed in the URL, it is possible to bookmark the
page. This can be useful in some cases.

Note: The get method is not suitable for very large variable values. It should not be used with
values exceeding 2000 characters.

In PHP, the predefined $_POST variable is used to collect values in a form with
method="post".

The $ POST Variable

http://www.w3schools.com/welcome.php?fname=Peter&%3Bage=37

The predefined $_POST variable is used to collect values from a form sent with
method="post".

Information sent from a form with the POST method is invisible to others and has no limits
on the amount of information to send.

Note: However, there is an 8 MB max size for the POST method, by default (can be changed
by setting the post_max_size in the php.ini file).

Example

<form action="welcome.php" method="post">
Name: <input type="text" name="fname">
Age: <input type="text" name="age">

<input type="submit">

</form>

When the user clicks the "Submit™ button, the URL will look like this:
http://www.w3schools.com/welcome.php

The "welcome.php" file can now use the $ POST variable to collect form data (the names of
the form fields will automatically be the keys in the $_POST array):

Welcome <?php echo $_POST["fname"];
?>1
 You are <?php echo $_POST["age"]; 7>
years old.

When to use method=""post""?

Information sent from a form with the POST method is invisible to others and has no limits
on the amount of information to send.

However, because the variables are not displayed in the URL, it is not possible to bookmark
the page.

The PHP $ REQUEST Variable

The predefined $ REQUEST variable contains the contents of both $ GET, $ POST, and
$_COOKIE.

The $_REQUEST variable can be used to collect form data sent with both the GET and
POST methods.

Example

Welcome <?php echo $_REQUEST["fname"];
?>1
 You are <?php echo $_REQUEST["age"];
?> years old.

http://www.w3schools.com/welcome.php

What is MySQL?

MySQL is a database server

MySQL is ideal for both small and large applications
MySQL supports standard SQL

MySQL compiles on a number of platforms

MySQL is free to download and use

The data in MySQL is stored in database objects called tables.
A table is a collection of related data entries and it consists of columns and rows.

Databases are useful when storing information categorically. A company may have a
database with the following tables: "Employees”, "Products”, "Customers" and "Orders".

PHP + MySQL

e PHP combined with MySQL are cross-platform (you can develop in Windows and
serve on a Unix platform)

Database Tables

A database most often contains one or more tables. Each table is identified by a name (e.g.
"Customers” or "Orders"). Tables contain records (rows) with data.

Below is an example of a table called "Persons":

LastName FirstName Address City

Hansen Ola Timoteivn 10 Sandnes
Svendson Tove Borgvn 23 Sandnes
Pettersen Kari Storgt 20 Stavanger

The table above contains three records (one for each person) and four columns (LastName,
FirstName, Address, and City).

Queries

A query is a question or a request.

With MySQL, we can query a database for specific information and have a recordset
returned.

Look at the following query:
SELECT LastName FROM Persons

The query above selects all the data in the "LastName™ column from the "Persons" table, and
will return a recordset like this:

LastName
Hansen
Svendson
Pettersen

Download MySQL Database

If you don't have a PHP server with a MySQL Database, you can download MySQL for free
here: http://www.mysql.com/downloads/

Facts About MySQL Database

One great thing about MySQL is that it can be scaled down to support embedded database
applications. Perhaps it is because of this reputation that many people believe that MySQL
can only handle small to medium-sized systems.

The truth is that MySQL is the de-facto standard database for web sites that support huge
volumes of both data and end users (like Friendster, Yahoo, Google).

Look at http://www.mysqgl.com/customers/ for an overview of companies using MySQL.

The free MySQL database is very often used with PHP.

Create a Connection to a MySQL Database
Before you can access data in a database, you must create a connection to the database.
In PHP, this is done with the mysql_connect() function.

Syntax
mysql_connect(servername,username,password);

http://www.mysql.com/downloads/
http://www.mysql.com/customers/

Parameter Description
servername Optional. Specifies the server to connect to. Default value is "localhost:3306"

username Optional. Specifies the username to log in with. Default value is the name of the
user that owns the server process

password Optional. Specifies the password to log in with. Default is "™

Note: There are more available parameters, but the ones listed above are the most important.
Visit our full PHP MySQL Reference for more details.

Example

In the following example we store the connection in a variable ($con) for later use in the
script. The "die" part will be executed if the connection fails:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (1$con)

{

die('Could not connect: ' . mysql_error());

}

/I some code
>

Closing a Connection

The connection will be closed automatically when the script ends. To close the connection
before, use the mysql_close() function:

<?php
$con = mysqgl_connect("localhost","peter”,"abc123");
if (1$con)

{

die("Could not connect: ' . mysql_error());

}

/I some code

mysql_close($con);
2>

http://www.w3schools.com/php/php_ref_mysql.asp

A database holds one or multiple tables.

Create a Database
The CREATE DATABASE statement is used to create a database in MySQL.

Syntax
CREATE DATABASE database_name

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example
The following example creates a database called "my_db™:

<?php
$con = mysqgl_connect("localhost","peter","abc123");
if (1$con)

{

die("Could not connect: ' . mysgl_error());

}

if (mysql_query("CREATE DATABASE my_db",$con))
{

echo "Database created";

}

else

{

echo "Error creating database: " . mysgl_error();

}

mysql_close($con);
2>

Create a Table

The CREATE TABLE statement is used to create a table in MySQL.

http://www.w3schools.com/sql/default.asp

Syntax

CREATE TABLE
table_name (
column_namel data_type,
column_name2 data_type,
column_name3 data_type,

)
To learn more about SQL, please visit our SQL tutorial.

We must add the CREATE TABLE statement to the mysqgl_query() function to execute the
command.

Example

The following example creates a table named "Persons”, with three columns. The column
names will be "FirstName", "LastName™ and "Age":

<?php
$con = mysql_connect("localhost","peter","abc123");
if (1$con)

{

die("Could not connect: ' . mysql_error());

}

/I Create database
if (mysql_query("CREATE DATABASE my_db",$con))
{

echo "Database created";

}

else

{

echo "Error creating database: " . mysgl_error();

}

/I Create table
mysql_select_db("my_db", $con);
$sgl = "CREATE TABLE
Persons (

FirstName

varchar(15), LastName
varchar(15), Age int

)"

/I Execute query
mysql_query($sgl,$con);

http://www.w3schools.com/sql/default.asp

mysql_close($con);
7>

Important: A database must be selected before a table can be created. The database is
selected with the mysql_select_db() function.

Note: When you create a database field of type varchar, you must specify the maximum
length of the field, e.g. varchar(15).

The data type specifies what type of data the column can hold. For a complete reference of all
the data types available in MySQL, go to our complete Data Types reference.

Primary Keys and Auto Increment Fields
Each table should have a primary key field.

A primary key is used to uniquely identify the rows in a table. Each primary key value must
be unique within the table. Furthermore, the primary key field cannot be null because the
database engine requires a value to locate the record.

The following example sets the personID field as the primary key field. The primary key field
is often an ID number, and is often used with the AUTO_INCREMENT setting.
AUTO_INCREMENT automatically increases the value of the field by 1 each time a new
record is added. To ensure that the primary key field cannot be null, we must add the NOT
NULL setting to the field.

Example

$sgl = "CREATE TABLE

Persons (

personiD int NOT NULL
AUTO_INCREMENT, PRIMARY
KEY (personID),

FirstName

varchar(15), LastName
varchar(15), Age int

)"

mysql_query($sqgl,$con);

Insert Data Into a Database Table

The INSERT INTO statement is used to add new records to a database table.
Syntax

It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their
values:

http://www.w3schools.com/sql/sql_datatypes.asp

INSERT INTO table_name
VALUES (valuel, value2, values,...)

The second form specifies both the column names and the values to be inserted:

INSERT INTO table_name (columnl, column2,
column3,...) VALUES (valuel, value2, values3,...)

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statements above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example
In the previous chapter we created a table named "Persons”, with three columns; "Firstname”,

"Lastname™ and "Age". We will use the same table in this example. The following example
adds two new records to the "Persons” table:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (1$con)

{

die("Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

mysql_query("INSERT INTO Persons (FirstName, LastName,
Age) VALUES ('Peter’, 'Griffin',35)");

mysql_query("INSERT INTO Persons (FirstName, LastName,
Age) VALUES (‘Glenn’, '‘Quagmire’,33)");

mysql_close($con);
2>

Insert Data From a Form Into a Database

Now we will create an HTML form that can be used to add new records to the "Persons"
table.

Here is the HTML form:

http://www.w3schools.com/sql/default.asp

<html>
<body>

<form action="insert.php" method="post">
Firstname: <input type="text" name="firstname">
Lastname: <input type="text" name="lastname">
Age: <input type="text" name="age">

<input type="submit">

</form>

</body>
</html>

When a user clicks the submit button in the HTML form in the example above, the form data
IS sent to "insert.php".

The "insert.php™ file connects to a database, and retrieves the values from the form with the
PHP $ POST variables.

Then, the mysql_query() function executes the INSERT INTO statement, and a new record
will be added to the "Persons" table.

Here is the "insert.php™ page:

<?php
$con = mysqgl_connect("localhost","peter","abc123");
if (1$con)

{

die("Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

$sql="INSERT INTO Persons (FirstName, LastName,
Age) VALUES
('$_POST][firstname]','$_POST[lastname]','$_POST[age]")";

if ('mysqgl_query($sql,$con))
{
die('Error: ' . mysql_error());
}

echo "1 record added";

mysql_close($con);
2>

Select Data From a Database Table

The SELECT statement is used to select data from a database.

Syntax

SELECT
column_name(s) FROM
table_name

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

The following example selects all the data stored in the "Persons” table (The * character
selects all the data in the table):

<?php
$con = mysqgl_connect("localhost","peter","abc123");
if (1$con)

{

die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);
$result = mysql_query("SELECT * FROM
Persons™); while($row =

mysql_fetch_array($result))
{

echo $row['FirstName'] . " " . $row['LastName'];
echo "
";

}

mysql_close($con);
2>

The example above stores the data returned by the mysql_query() function in the $result
variable.

Next, we use the mysql_fetch_array() function to return the first row from the recordset as an
array. Each call to mysql_fetch_array() returns the next row in the recordset. The while loop
loops through all the records in the recordset. To print the value of each row, we use the PHP
$row variable ($row['FirstName'] and $row['LastName']).

The output of the code above will be:

Peter Griffin
Glenn Quagmire

http://www.w3schools.com/sql/default.asp

Display the Result in an HTML Table

The following example selects the same data as the example above, but will display the data
in an HTML table:

<?php
$con = mysqgl_connect("localhost","peter","abc123");
if (1$con)

{

die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);
$result = mysql_query("SELECT * FROM

Persons™); echo "'<table border="1">
<tr>

<th>Firstname</th>
<th>Lastname</th>

<ftr>";

while($row = mysql_fetch_array($result))

{
echo "<tr>";
echo "<td>" . $row[FirstName']

"</td>"; echo "<td>" . $row['LastName] .
"</td>"; echo "</tr>";

}

echo "</table>";

mysql_close($con);
7>

The output of the code above will be:

Firstnam Lastnam
e e
Glenn Quagmire

Peter Griffin

The WHERE clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

Syntax

SELECT

column_name(s) FROM

table_name

WHERE column_name operator value

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

The following example selects all rows from the "Persons™ table where "FirstName="Peter"":

<?php
$con = mysql_connect(*"localhost","peter","abc123");
if (1$con)

{

die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);

$result = mysqgl_query("SELECT * FROM
Persons WHERE FirstName="Peter™);

while($row = mysql_fetch_array($result))
{

echo $row['FirstName'] . " " . $row['LastName'];
echo "
";
}

7>

The output of the code above will be:

Peter Griffin

The ORDER BY Keyword

The ORDER BY keyword is used to sort the data in a recordset.

The ORDER BY keyword sort the records in ascending order by default.

If you want to sort the records in a descending order, you can use the DESC keyword.
Syntax

SELECT

column_name(s) FROM

table_name
ORDER BY column_name(s) ASC|DESC

http://www.w3schools.com/sql/default.asp

To learn more about SQL, please visit our SQL tutorial.
Example

The following example selects all the data stored in the "Persons” table, and sorts the result
by the "Age" column:

<?php
$con = mysqgl_connect("localhost","peter","abc123");
if (1$con)

{

die('Could not connect: ' . mysql_error());

}

mysql_select_db("my_db", $con);
$result = mysql_query("SELECT * FROM Persons ORDER BY

age"); while($row = mysql_fetch_array($result))
{
echo $row['FirstName';
echo " " . $row['LastName'];
echo" " . $row['AgeT;
echo "
";

}

mysql_close($con);
7>

The output of the code above will be:

Glenn Quagmire 33
Peter Griffin 35

Order by Two Columns

It is also possible to order by more than one column. When ordering by more than one
column, the second column is only used if the values in the first column are equal:

SELECT

column_name(s) FROM
table_name

ORDER BY columnl, column2

Update Data In a Database

The UPDATE statement is used to update existing records in a table.
Syntax

UPDATE table_name

SET columnl=value,

column2=value2,... WHERE
some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which
record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example

Earlier in the tutorial we created a table named "Persons”. Here is how it looks:
FirstName LastName Age

Peter Griffin 35

Glenn Quagmire 33

The following example updates some data in the "Persons” table:

<?php
$con = mysql_connect("localhost","peter","abc123");
if ($con)

{

die("Could not connect: ' . mysgl_error());

}

mysql_select_db("my_db", $con);
mysql_query("UPDATE Persons SET

Age=36
WHERE FirstName="Peter' AND LastName='Griffin"");

mysql_close($con);
2>

After the update, the "Persons" table will look like this:

FirstName LastName Age

http://www.w3schools.com/sql/default.asp

Peter Griffin 36
Glenn Quagmire 33

Delete Data In a Database
The DELETE FROM statement is used to delete records from a database table.
Syntax

DELETE FROM table name
WHERE some_column = some_value

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which
record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

To learn more about SQL, please visit our SQL tutorial.

To get PHP to execute the statement above we must use the mysql_query() function. This
function is used to send a query or command to a MySQL connection.

Example
Look at the following "Persons” table:
FirstName LastName Age

Peter Griffin 35

Glenn Quagmire 33

The following example deletes all the records in the "Persons™ table where
LastName='Griffin":

<?php
$con = mysqgl_connect(*"localhost","peter”,"abc123");
if (1$con)

{

die("Could not connect: ' . mysgl_error());

}

mysqgl_select_db("my_db", $con);
mysql_query("DELETE FROM Persons WHERE

LastName="Griffin™"); mysql_close($con);
2>

After the deletion, the table will look like this:

http://www.w3schools.com/sql/default.asp

FirstName LastName Age

Glenn Quagmire 33

Create an ODBC Connection

With an ODBC connection, you can connect to any database, on any computer in your
network, as long as an ODBC connection is available.

Here is how to create an ODBC connection to a MS Access Database:

Open the Administrative Tools icon in your Control Panel.
Double-click on the Data Sources (ODBC) icon inside.
Choose the System DSN tab.

Click on Add in the System DSN tab.

Select the Microsoft Access Driver. Click Finish.

In the next screen, click Select to locate the database.

Give the database a Data Source Name (DSN).

Click OK.

N WN R

Note that this configuration has to be done on the computer where your web site is located. If
you are running Internet Information Server (11S) on your own computer, the instructions
above will work, but if your web site is located on a remote server, you have to have physical
access to that server, or ask your web host to to set up a DSN for you to use.

Connecting to an ODBC

The odbc_connect() function is used to connect to an ODBC data source. The function takes
four parameters: the data source name, username, password, and an optional cursor type.

The odbc_exec() function is used to execute an SQL statement.
Example

The following example creates a connection to a DSN called northwind, with no username
and no password. It then creates an SQL and executes it:

$conn=odbc_connect('northwind',",");
$sql="SELECT * FROM customers";
$rs=odbc_exec($conn,$sql);

Retrieving Records

The odbc_fetch_row() function is used to return records from the result-set. This function
returns true if it is able to return rows, otherwise false.

The function takes two parameters: the ODBC result identifier and an optional row number:

odbc_fetch_row($rs)

Retrieving Fields from a Record

The odbc_result() function is used to read fields from a record. This function takes two
parameters: the ODBC result identifier and a field number or name.

The code line below returns the value of the first field from the record:
$compname=odbc_result($rs,1);
The code line below returns the value of a field called "CompanyName":

$compname=odbc_result($rs,"CompanyName");

Closing an ODBC Connection
The odbc_close() function is used to close an ODBC connection.

odbc_close($conn);

An ODBC Example

The following example shows how to first create a database connection, then a result-set, and
then display the data in an HTML table.

<html>
<body>

<?php
$conn=odbc_connect('northwind',",");
if (1$conn)

{exit("Connection Failed: " . $conn);}
$sql="SELECT * FROM customers";

$rs=odbc_exec($conn,$sql);

if (1$rs)
{exit("Error in

SQL");} echo

"<table><tr>",

echo "<th>Companyname</th>";

echo "<th>Contactname</th></tr>";

while (odbc_fetch_row($rs))
{
$compname=odbc_result($rs,"CompanyName");
$conname=odbc_result($rs,"ContactName");
echo "<tr><td>$compname</td>";
echo "<td>$conname</td></tr>";
}

odbc_close($conn);

echo "</table>";

7>

</body>
</html>

UNH-b

lf\\@ b kQQ\\/(" ((YAMPP/ LAMP/ (-\:C')W)Qﬁlj)

XAMPP TUTORIAL

XAMPP

XAMPP is one of the widely used cross-platform web servers, which
helps developers to create and test their programs on a local
webserver. It was developed by the Apache Friends, and its native
source code can be revised or modified by the audience. It consists
of Apache HTTP Server, MariaDB, and interpreter for the different
programming languages like PHP and Perl. It is available in 11
languages and supported by different platforms such as the IA-32
package of Windows & x64 package of macOS and Linux.

What is XAMPP?

XAMPP is an abbreviation where X stands for Cross-Platform, A
stands for Apache, M stands for MYSQL, and the Ps stand for PHP
and Perl, respectively. It is an open-source package of web solutions
that includes Apache distribution for many servers and command-line
executables along with modules such as Apache server, MariaDB, PHP,

and Perl.

XAMPP helps a local host or server to test its website and clients via
computers and laptops before releasing it to the main server. It is a
platform that furnishes a suitable environment to test and verify the
working of projects based on Apache, Perl, MySQL database, and PHP

&

through the system of the host itself. Among these
technologies, Per| IS a Programming language used for web
development, PHP is a backend scripting language, and MariaDB is the
most. vividly used database developed by MySQL. The detailed
description of these CoOmponents is given below.

Components of XAMPP

As defined earlier, XAMPP is used to symbolize the classification of
solutions for different technologies. It provides a base for testing of
projects based on different technologies through a personal server,
XAMPP is an abbreviated form of each alphabet representing each of
its major components. This collection of software contains a web
server - named Apache, a database management system

named MariaDB and scripting/ programming languages such
as PHP and Perl. X denotes Cross-platform, which means that it can
work on different platforms such as Windows, Linux, and macOs.

Many other components are also part of this collection of software
and are explained below.

1. Cross-Platform: Different local systems have different

configurations of operating systems installed in it. The
component of cross-platform has been included to increase the
utility and audience for this package of Apache distributions. It
supports various platforms such as packages of Windows, Linus,

and MAC OS.
Apache: It is an HTTP a cross-platform web server. It is used

worldwide for delivering web content. The server application has
made free for installation and used for the community of
‘developers under the aegis of Apache Software Foundation. The

@)

remote server of Apache delj

Vers the requested files, images, and
other documents to the user.

3. MariaDB: Originally, MySQL DBMS was a part of XAMPP, byt
NOW it has been replaced by MariaDB. It is one of the most
Widely used relational DBMS, developed by MySQL. It offers

online services of data storage, manipulation, retrieval,

arrangement, and deletion,

4. PHP: 1t is the backend scripting language primarily used for web
development. PHP allows users to create dynamic websites and
applications. It can be installed on every platform and supports a
variety of database Management systems. It was implemented
using C language. PHP stands for Hypertext Processor. It is said
to be derived from Personal Home Page tools, which explains its
simplicity and functionality.

5. Perl: 1t is a combination of two high-level dynamic languages,
namely Perl 5 and Perl 6. Perl can be applied for finding solutions
for problems based on system administration, web development,
and networking. Perl allows its users to program dynamic web
applications. It is very flexible and robust.

6. phpMyAdmin: It is a tool used for dealing with MariaDB. Its
version 4.0.4 is currently being used in XAMPP. Administration of
DBMS is its main role.

7. OpenSSL: It is the open-source implementation of the Secure
Socket Layer Protocol and Transport Layer Protocol. Presently
version 0.9.8 is a part of XAMPP.

8. XAMPP Control Panel: It is a panel that helps to operate and
regulate upon other components of the XAMPP. Version 3.2.1 is
the most recent update. A detailed description of the control
panel will be done in the next section of the tutorial.

9. Webalizer: It is a Web Analytics software solution used for User

logs and provide details about the usage.
Mercury: It is a mail transport system, and its latest version

10.
is 4.62. It is a mail server, which helps to manage the mails across

the web.
11. Tomcat: Version 7.0.42 is currently being used in XAMPP. It

is a servlet based on JAVA to provide JAVA functionalities.

7. Filezilla: It is a File Transfer Protocol Server, which supports

and eases the transfer operations performed on files. Its recently

updated version is 0.9.41.

XAMPP Format Support

XAMPP is supported in three file formats:

o .EXE- It is an extension used to denote executable files making it
accessible to install because an executable file can run on a

computer as any normal program.

.7z - 7zip file- This extension is used to denote compressed files
that support multiple data compression and encryption
algorithms, It is more favored by a formalist, although it requires

working with more complex files.

» .ZIP- This extension supports lossless compression of files. A
Zipped file may contain multiple compressed files. The Deflate
algorithm is mainly used for compression of files supported by
this format. The .ZIP files are quite tricky to install as compared

to .EXE

Thus .EXE is the most straightforward format to install, while the other
two formats are quite complicated and complex to install.

What is LAMP?

LAMP is an open-source Web development platform that

operating system, Apacheas the Web

uses Linux as the
system

server, MySQL as the relational database management
and PHP/Perl/Python as the object-oriented scripting language.

Sometimes LAMP is referred to as a LAMP stack because the platform
has four layers. Stacks can be built on different operating systems.

LAMP is a example of a web service stack, named as an acronym. The
LAMP components are largely interchangeable and not limited to the
original selection. LAMP is suitable for building dynamic web sites and

web applications.

Since its creation, the LAMP model has been adapted to another
component, though typically consisting of free and open-source

software.

o intrusion prevention (IPS) system and Snort an intrusion

detection (IDS)

o RRD tool for diagrams
o Nagios, Cacti, or Collectd for monitoring

LAMP Stack Components

Linux based web servers consist of four software components. These

components are arranged in layers supporting one another and make
up the software stack. Websites and Web Applications run on top of
this underlying stack. The common software components are as

follows:

1. Linux: Linux started in 1991. It sets the foundation for the stack

model. All other layers are run on top of this layer.

It is an open-source and free operating system. It is endured
partly because it's flexible, and other operating systems are

harder to configure.

Apache: The second layer consists of web server software,

typically Apache Web Server. This layer resides on top of the
layer.

Linux
Apache HTTP Server is a free web server software package made

available under an open-source license. It used to be known as

Apache Web Server when it was created in 1995,

It offers a secure and extendable Web server that's in sync with

current HTTP standards. Web servers are responsible for

translating from web browsers to their correct website.

. MySQL: MySQL is a relational database management system
used to store application data. It is an open-source and keeps all

the data in a format that can easily be queried with the SQL

language.
SQL works great with well-structured business domains, and a
great workhorse that can handle even the most extensive and

most complicated websites with ease.

MySQL stores details that can be queried by scripting to
construct a website. MySQL usually sits on top of the Linux layer
alongside Apache. In high-end configurations, MySQL can be
offloaded to a separate host server.

4. PHP: The scripting layer consists of PHP and other similar web

programming languages.

The PHP open-source scripting language works with Apache to
create dynamic web pages. We cannot use HTML to perform

dynamic processes such as pulling data out of a database.
To provide this type of functionality, we drop PHP code into the
parts of a page that you want to be dynamic. Websites and Web
Applications run within this layer.
PHP is designed for efficiency. It makes programming easier and
allowing to write new code, hit refresh, and immediately see the

resulting changes without the need for compiling.

LAMP Architecture

LAMP has classic layered architecture, with Linux at the lowest level.
The next layer is Apache and MySQL, followed by PHP.

Although PHP is at the top or presentation layer, the PHP component
sits inside Apache.

Developers that use these tools with a Windows operating system
instead of Linux are said to be using WAMP, with a Macintosh

system MAMP, and with a Solaris system SAMP.

Linux, Apache, MySQL and PHP, all of them add something unique to
the development of high-performance web applications. Originally
popularized from the phrase Linux, Apache, MySQL, and PHP, the

acronym LAMP now refers to a generic software stack model.

PHP/Perl/Python B
Scripting Layer

Linux
Operating System Layer

The modularity of a LAMP stack may vary. Still, this particular software
combination has become popular because it is sufficient to host a
wide variety of website frameworks, such asJoomla, Drupal,

and Wovr . iPress.

The components of the LAMP stack are present in the software
repositories of the most Linux distributions. The LAMP bundle can be

combined with many other free and open-source software packages,

such as the following:

o netsniff-ng for security testing and hardening

LAMP is open source and non-proprietary so we can avoid lock-in. We
have the flexibility to select the right components for specific projects
or business requirements,

LAMP offers flexibility in other ways as well. Apache is modular in
design, and we will find there are existing, customizable modules
available for many different extensions. These modules range from
support for other languages to authentication capabilities.

Another advantage of LAMP is its secure architecture and well-
established encryption practices that have been proven in the

enterprise.
Efficiency

LAMP can help to reduce development time because it is an open-
source stack that has been available for more than a decade.

We can build on what other people have done in the past and make it
own. Work within an Apache module that gets 80% of the way there
customize the last 20%, and save considerable time as a result.

Advantages of LAMP
LAMP has the following advantages, such as:

1. The LAMP stack consists of four components, all of which are
examples of Free and Open-Source Software (FOSS). As they
are free and available for download, it attracts the attention of

many users who wish to avoid paying large sums of money when

developing their website.

2. Because it is FOSS, the source code of the software is shared and
available for people to make changes and improvements,
enhancing its overall performance.

3. The LAMP stack has proven to be a secure and stable platform
thanks to its vast community that contributes when any

problems arise.
4. We can easily customize the stack and interchange the
components with other open-source software to suit the needs.

LAMP Stack Alternatives

There are several variants of the four stack model as well. These
variants use alternative software, replacing one or more of the

standard components.
Open-source alternatives are:

o LEMP(Linux, NGINX, MySQL/MariaDB, PHP/Perl/Python)
LAPP(Linux, Apache, PostgreSQL, PHP)

LEAP(Linux, Eucalyptus, AppScale, Python)
LLMP(Linux, Lighttpd, MySQL/MariaDB, PHP/Perl/Python)

o}

o

o

While non-open source alternatives include:
o WAMP(Windows, Apache, MySQL/MariaDB, PHP/Perl/Python)
o WIMP(Windows, Internet Information Services, MySQL/MariaDB,

PHP/Perl/Python)
o MAMP(Mac OS x, Apache, MySQL/MariaDB, PHP/Perl/

CLOUD OBJECT
. STORAGE

TERRAFORM
FILES

A
ENVIRONMENT

execution shows how the elements

The LAMP stack order of

interoperate. The process starts when the Apache webserver receives

requests for web pages from a user's browser. If the request is for a
t to PHP, which loads the file and

PHP file, Apache passes the reques
executes the code contained in the file. PHP also communicates with

MySQL to fetch any data referenced in the code.
e data from the database to

PHP then uses the code in the file and th
to display web pages. The

create the HTML that browsers require
LAMP stack is efficient at handling not only static web pages but also
ontent may change each time it is loaded

dynamic pages where the ¢
dentity and other factors.

depending on the date, time, user i
n passes the resulting data back to
he browser. It can also store this
Il of these operations are enabled
he base of the stack.

After running the file code, PHP the
the Apache webserver to send to t
new data in MySQL. And of course, a
by the Linux operating system running at t

Flexibility

Although LAMP uses Linux as the OS, we can use the other
components with an alternative OS to meet specific needs. For

example, there is a WAMP stack, which uses Microsoft Windows.

—

VNYT- &

Servlet technology is used to create a web application (resides at
server side and generates a dynamic web page).

Servlet technology is robust and scalable because of java language.
Before Servlet, CGI (Common Gateway Interface) scripting language
was common as a server-side programming language. However, there
were many disadvantages to this technology. We have discussed these

disadvantages below.

There are many interfaces and classes in the Servlet API such as
Servlet, GenericServlet, HttpServlet, ServletRequest, ServlietResponse,

etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

Servlet is a technology which is used to create a web application.

O

- Servlet is an API that provides many interfaces and classes

including documentation.
Servlet is an interface that must be implemented for creating any

Servlet.
Servlet is a class that extends the capabilities of the servers and

responds to the incoming requests. It can respond to any

requests.
Servlet is a web component that is deployed on the server to

create a dynamic web page.

NS l)request

2)response is generated
atruntime

3)response is sent
to the client

o

What is the web application and what is the difference between
Get and Post request?

o What informaticn is received by ihe web server if we request for
a Servlet?

o How to run servlet in Eclipse, MyEclipse and Netbeans IDE?

o What are the ways for servlet collaboration and what is the

difference between RequestDispatcher and sendRedirect()
method?

What is the difference between ServletConfig and ServletContext
interface?

How many ways can we maintain the state of a user? Which
approach is mostly used in web development?

How to count the total number of visitors and whole response
time for a request using Filter?

How to run servlet with annotation?

How to create registration form using Servlet and Oracle
database?

o How can we upload and download the file from the server?

What is a web application?

A web application is an application accessible from the web. A web
application is composed of web components like Servlet, JSP, Filter,
etc. and other elements such as HTML, CSS, and JavaScript. The web
components typically execute in Web Server and respond to the HTTP

request.

CGI (Common Gateway Interface)

CGI technology enables the web server to call an external program
and pass HTTP request information to the external program to process
the request. For each request, it starts a new process.

Server
/ \ CGl CGl
Request) //V Shell Program
Request |
|
Request i é:h%ll é
\ httpd }
Processor Load Cblu g
ool o

Disadvantages of CGI

There are many problems in CGI technology:

1. If the number of clients increases, it takes more time for sending

the response.

2. For each request, it starts a process, and the web server is limited
to start processes,

3. It uses platform dependent language e.g. C, C++, perl.

Advantages of Servlet

Web Server

f\'eb Container
Request

—Q Thead),
Request
e > T) » <S>

Processor Load \

muaBRNREEN

There are many advantages of Servlet over CGL The web container
Creates threads for handling the multiple requests to the Servlet.
Threads have many benefits over the Processes such as they share a
common memory area, lightweight, cost of communication between
the threads are low. The advantages of Servlet are as follows:

L. Better performance: because it Creates a thread for each
request, not process.

2. Portability: because it uses Java language,

3. Robust: VM manages Servlets, so we don't need to worry abc
the memory leak, garbage collection, etc.

4. Secure: because it uses java language.

Servlet Interface

Servlet interface provides commonbehaviorto all the servlets.Servlet interface defines methods

that all servlets must implement.
Servlet interface needs to be implemented for creating any servlet (either directly or indirectly). It
provides 3 life cycle methods that are used to initialize the servlet, to service the requests, and to

destroy the servlet and 2 non-life cycle methods.

Methods of Servlet interface

There are 5 methods in Servlet interface. The init, service and destroy are the life cycle methods of

servlet. These are invoked by the web container.

Method Description

public void init(ServletConfig config) initializes the servlet. It is the life cycle method of
servlet and invoked by the web container only once.
public void service(ServletRequest provides response for the incoming request. It is
request,ServletResponse response) invoked at each request by the web container.

is invoked only once and indicates that servlet is being

public void destroy()
destroyed.

public ServletConfig returns the object of ServletConfig.

getServleiConfig()

" public String g~:ServletInfo() returns information about servlet such as writer,

| copyright, version etc.

Steps to create a servlet example

; vers.
There are given 6 steps to create a servlet example. These steps are required for all the s€r

The servlet example can be created by three ways:

1. By implementing Servlet interface,
2. By inheriting GenericServlet class, (or)

3. By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet because it provides http request specific
method such as doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this example. The steps are as follows:

Features of 'Java

The features of Java are also known as java buzzwords.

1. Create a directory structure

2. Create a Servlet

3. Compile the Servlet

4. Create a deployment descriptor

5. Start the server and deploy the project

6. Access the servlet

download this example of serviet
download example of servlet by extending GenericServlet

download example of servlet by implementing Servlet interface

1)Create a directory structures

The directory structure defines that where to put the different types of files so that web container

may get the information and respond to the client.

The Sun Microsystem defines a unique standard to be followed by all the server vendors. Let's see

the directory structure that must be followed to create the servlet.

e

| WEB-INF ;

e
H

L classes

class files

web.xml

HTML

Static Resources {eg. Images,css etc.)

As you can see that the servlet class file must be in the classes folder. The web.xml file must be

under the WEB-INF folder.

2\Create a Servlet

There are three ways to create the servlet.

1. By implementing the Servlet interface
2. By inheriting the GenericServlet class

3. By inheriting the HttpServlet class

The HttpServlet class is widely used to create the servlet because it provides methods to handle
http requests such as doGet(), doPost, doHead() etc.
In this example we are going to create a servlet that extends the HttpServlet class. In this example,

we are inheriting the HttpServlet class and providing the implementation of the doGet() method.
Notice that get request is the default request.

DemoServlet.java

import javax.servlet.http.*;

import javax.serviet.*;

import java.io.*;

public class DemoServlet extends HttpServiet{

public void doGet(HttpServletRequest req,HttpServietResponse res)
throws ServletException,IOException

{
res.setContentType("text/html");//setting the content type
PrintWriter pw=res.getWriter();//get the stream to write the data

//writing html in the stream
prv.printin(” <html> <body>");
pw.printin("Welcome to servlet");

pw.printin(*</body> </html>");

pw.close();//closing the stream

N

3)Compile the servlet

For compiling the Servlet, jar file is required to be loaded. Different Servers provide different jar files:

Jar file Server

4 SCROLL TO TOP Apache Tomcat

2) weblogic.jar Weblogic
3) javaeejar Glassfish

4) javaee jar JBoss

Two ways to load the jar file

1 set classpath
2. paste the jar file in JRE/lib/ext folder

Put the java file in any folder. After compiling the java file, paste the class file of servlet in WEB-

INF/classes directory.

4)Create the deployment descriptor (web.xml file)

The deployment descriptor is an xml file, from which Web Container gets the information about

the servet to be invoked.

The web container uses the Parser to get the information from the web.xml file. There are many xml

parsers such as SAX, DOM and Pull.

Thee are many elements in the web.xml file. Here is given some necessary elements to run the

simple servlet program.

web.xml file

<web-app>

[OPF
Aanooiaicwal < Zcarvlet-name >

e V&, V.M 1

’ <servlet-class>DemoServlet</servlet-class>

<,'serviet>

<servlet-mapping>
<servlet-name>sonoojaiswal </servlet-name>

<url-pattern>/welcome </url-pattern>

</servlet-mapping>

</web-app>

Description of the elements of web.xml file

There are too many elements in the web.xml file. Here is the illustration of some elements that is

used in the above web.xml file. The elements are as follows:

<web-app> represents the whole application.
<servlet> is sub element of <web-app> and represents the servlet.
<servlet-name> is sub element of <servlet> represents the name of the servlet

<servlet-class> is sub element of <servlet> represents the class of the servlet.
<servlet-mapping> is sub element of <web-app>. Itis used to map the servlet.
e to invoke

<url-pattern> is sub element of <servlet-mapping>. This pattern is used at client sid

the servlet.

5)Start the Server and deploy the project

To start Apache Tomcat server, double click on the startup.bat file under apache-tomcat/bin

directory.

One Time Configuration for Apache Tomcat Server

You need to perform 2 tasks:
1. set JAVA_HOME or JRE_HOME in environment variable (It is required to start server).

2. Change the port number of tomcat (optional). It is required if another server is running on

same port (8080).

Go to My Com i :
: byf puter properties -> Click on advanced tab then environment variables -> Click on the
new tab of us i = i : ;
. er variable -> Write JAVA_HOME in variable name and paste the path of jdk folder in
variable value -> ok -> ok -» ok

Go to My Computer properties:

A
SNtk

ey Open . SCIP Sum Javakeywnids Oeiti-metr.. sendettales
% Manoge tut Certfled Pr,

5 & TortouaSWN

Mg netaod dove...
Ducoveect netwotk dne

Create thedeut

po7TeM |
AV

Click on advanced system settings tab then environment variables:

Comtrel Panel Horme

View basac information about your computer
Peusce Manages Werdomy edetion
Bemmote wettegn Wirndows 7 Utimate

Comrgh € 2000 Mucresoh Compeantn AS nghti rese, ¢d

SYystem

Rating m, ws Expernce Indes
Procesies IAehR) PentsmiR) Dual CPU £2160 @ 100GH | 40 Ghe
hmledm«mr, RAME 200 G8
Systee type 12-tt Opacateg Syrtens
Pen and Touch Ha Pem o Touch Input is semtable e thay Drapley
Comgatter name, domasny wnd workgioup setiings
Acticn Center Lemputer name: $S8IT-PC
{J
Wingaws Update Pl computer apmve L LETLS

Lo 0
Pedormance ndoermation and b i

Camtaza . pbest Dot s
udeT e i Contsg

Comvonten Name | Haowwe| AToxnd | Guam Frobecson | Femcta
Vo T te gged or B8 Aorwvdrator 1o make most o Fae changy
Petomarce

Vs efecry Frutessr sctwduing emory wage s ey

—

User Prorses
Umaiiop semrgs misfec 1o PO OgOn

240 tapesmaie ndey
Swtp and Facsveny WnteliR) Pentaenifl Dual (PU E2440 & 1E0GM: 160 GH;
200 68

3252 Dpreatng Systemt

System ®an o Femen inice aof SED G e

Ha Pe o Toueh Input 15 avaitsble foe thes Oviplary

| dema_ g workgroup sestings

SSUTPC
SEUTPC

WORKLROUP

Click on the new tab of user variable or system variable:

3 AR nghts reserved
CProgam Pes Lava g 1,700 1

SUEDUROFLE WO L acal W ewp
MLEEPROFLE SN AR Oats | 0o Targ

o o)

SYRtee Laruives
Vacabee Ve
Condpac 2BV \pyatere 2 ymd £xe

" _NO_psT ¢ | EPectemin) Dust CRU B2 3 80GHs 150 Ghe
MR O P,

Pt Raporenae lodex

peesting Syitems
Tewh loput it avadable for this Crsplay

1P settings

JAVA_HOME

T Pogam s Ua ke 1000
i
L e

Yl
Ciigindows gradeniivnd eae

w25 wyter)

15 k)
CIRAT e T

”‘?yﬁ ﬁ)m !ﬁ‘fw XFQ? o e ¥ 8 : B0

AV

There must not be semicolon (;) at the end of the path.

After setting the JAVA_HOME double click on the startup.bat file in apache tomcat/bin.

Note: There are two types of tomcat available:

1. Apache tomcat that needs to extract only (no need to install)

2. Apache tomcat that needs to install

It iSthe example of apache tomcat that needs to extract only.

« Davtitrap

i RN CamRabile Aur Fade i K
Dowedoat S <stehng CRR Y] Weodowwy Batch Fie 18 KR
1L Recent Paces Catalna.sh ¢ S8 8 Y] 1508

¥ Catebna tasks LBR P X3¢ o ThE

i Libremes SOt daemas X & fang Aable Aar b L) Ki
+ Decuments W omemons - deemen: nat et LN MW K 3 . 184 KB
“M ‘X‘(gmﬂ LR 4 D 3 Ut § e 8
- Prctures S Pgest £ 2800 Jerws Banch £ K§

Ltveman degeeeah AN Y PRVE S Y s b w
--dﬁn o vetcaspath X R 4 s "3 458
= SeRe Eniigat an e FEY.
B (ompote o shatdewn Mdos Bateh Bde ¥
& v daa 3 4 g X
e Peaces D Windowes Bated Fae 3KR
xSl £ : CGtitee) 28
waa Fun @R . bomaatgub Execstable la e M r3
'Mﬁmﬂw\a & K8
S Neveork N toadwrapper o 408
tooh-weappes sh kg

S vewen x ¥

VTR sR &4 ERES" R b als 4 K

A Lbrarwes
+ Documents
- Mo
- FecTores
Subrverst

8 e

e Comguanr
& Lo b (£
L Percnd ()
s.a Setvanees iE
_a Fun ¥

W Fetaok

Diapn vr

Foem Nea folder

<ataba sh
T camstnaLache
= comrrwmt &
‘ eomenens- 48
" tpagpens
% dagaa
Gyt 5h
lu ACavpIth

% thandonn
shegduram. sh
» startup

mmz Berver stavtup in 1

e 38

o i BASINT 10 PR

nm)' hvhlhh(n' TilesContext far unusu eu.apuln.nto iu
ontaxtFac

'are ing conf i

rotion file lotrutz default.iml}
2013 9:12:2

P com.opensymphony.xworkd .util. logying.conmons .Conmonsloyy!

¢ inf
auio. Pors ing uollgunuon file (strots-plugin.xnl)
iy e g
utm hrlina conf iguration file (etruts.unl)

D :"lll. 2010 8:12:21 M com.opensynphony.avorkd .util. degging.conmons Commonslagg

u. 813 #212:21 PN com.opensynphong.wvork? . util. legging.conmons «Commonslogy|

info
lmzo. Oworrldlnhpnpony strute, d10n.reload ~ old valus! Falue new valued true

:“I.l. 2019 9:12:21 PR com.opensynphony. xwarkd (wtdl, Joyylng.conmons .Commansloyy
'] Onrrtdlnp promawtsn ss

ull 9212:21 P org.a
n}D Bnrtlna c«;»: e HETP/L,

mamanfloumetdnn. anl.reload ~ ald valua: false nel

""'p.f'«'”" JDhEEple et pl b ranea
on "
pathe .covate.ajp.AjpProtocol at
ting Coyo Aot 2 on ajp “Dow’ o S
312321 M ongzwuh.nnum.turtu»'hnltnl atary
"

akars

e

WIg BTy AN

B

12PN
VAP

Lol (Rl T

Now server is started successfully.

2) How to change port number of apache tomcat

Changing the port number is required if there is another server running on the same system with

same port number.Suppose you have installed oracle, you need to change the port number of
apache tomcat because both have the default port number 8080.

Open server.xml file in notepad. It is located inside the apache-tomcat/conf directory . Change

the Connector port = 8080 and replace 8080 by any four digit number instead of 8080. Let us
replace it by 9999 and save this file.

5) How to deploy the servlet project

Copy the project and paste it in the webapps folder under apache tomcat.

& Compute
&, Locst Dek (1
i Porsonal O}
o Strawes &
w4 Fun ¥

P
B0 s

But there are several ways to deploy the project. They are as follows:

context(project) folder into the webapps directory
t SCROLL TO TOP

war folder into the webapps directory

S T T N S L N T T, e, S NETRON ——— b il

o By selecting the folder path from the server

o By selecting the war file from the server

Here, we are using the first approach.

You can also create war file, and paste it inside the webapps directory. To do so, you need to use jar
too! to create the war file. Go inside the project directory (before the WEB-INF), then write:

projectfolder> jar cvf myproject.war *

Creating war file has an advantage that moving the project from one location to another takes less
time.

6) How to access the servlet

Open broser and write http://hostname:portno/contextroot/urlpatternofservlet. For example:

http://localhost:9999/demo/welcome

Iocalhost9999/demo/we? x ‘

1€ - C A [htp/localhost:9999/demo/welcome

3 Welcome to servlet

download this example of servlet (using notepad)
download example of servlet by extending GenericServiet
download example of servlet by implementing Servlet interface

TmRRANTY Wy AERRET TR

JSP Tutorial

JSP technology is used to create web application just like Servlet technology. It
can be thought of as an extension to Servlet because it provides more <\§“ >

functionality than servlet such as expression language, JSTL, etc. |

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier to o JSP
maintain than Servlet because we can separate designing and development. It et
provides some additional features such as Expression Language, Custom Tags, etc.

Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:
1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features of the Servlet in

JSP. In addition to, we can use implicit objects, predefined tags, expression language and Custom

tags in JSP, that makes JSP development easy.

2) Easy to maintain

JSP-can be easily managed because we can easily separate our business logic with presentation

logic. In Servlet technology, we mix our business logic with the presentation logic.
3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The Servlet code

needs to be updated and recompiled if we have to change the look and feel of the application.

4) Less code than Servlet

In JSP we can use many tags such as action tags, JSTL, custom tags, etc. that reduces the code.
Moreover, we can use EL, implicit objects, etc. ‘

The Lifecycle of a JSP Page
The JSP pages follow these phases:

o Translation of JSP Page

o Compilation of JSP Page

o Classloading (the classloader loads class file)
Instantiation (Object of the Generated Servlet is created).
Initialization (the container invokes jsplnit() method).

Request processing (the container invokes _jspService() method).

Destroy (the container invokes jspDestroy() method).

i Note: jspinit(), _jspService() and jspDestroy() are the life cycle methods of JSP,

Buffer
(dynamiccontent)

W

§ ISP Translator .

Serviet i 4 SENletObiEd. L ‘

(.Javafile) ‘.‘:‘l*"--gww _m“__,./,

e, '1’»51,-;,,

compiler . JRE

\‘;:’ b
- B I./ . ‘14‘“‘w 420
Classfile __/

As lepicted in the above diagram, JSP page is translated into Servlet by the help of JSP translator.
The JSP translator is a part of the web server which is responsible for translating the JSP page into

Servlet. After that, Servlet page is compiled by the compiler and gets converted into the class file.
Moreover, all the processes that happen in Servlet are performed on JSP later like initialization,

committing response to the browser and destroy.

Creating a simple JSP Page

To create the first JSP page, write some HTML code as given below, and save it by jsp extension. We

have saved this file as index jsp. Put it in a folder and paste the folder in the web-apps directory in

apache tomcat to run the JSP page.
index.jsp

Let's see the simple example of JSP where we are using the scriptlet tag to put Java code in the JSP

page. We will learn scriptlet tag later.

<html>

<body>

<% out.print(2*5); %>
</body>

</html>

How to run a simple Jsp Page?

Follow the following steps to execute this JSp page:
O Start the server
© Putthe JSP file in a folder and deploy on the server

© Visit the browser by the URL http://locaIhost:portno/contextRoot/jspfile, for example,
http://localhost:8888/myapplication/index.jsp

Do | need to follow the directory structure to run a simple JSP?

No, there is no need of directory structure if you don't have class files or TLD files. For example, put
JSP files in a folder directly and deploy that folder. It will be running fine. However, if you are using
Bean class, Servlet or TLD file, the directory structure is required.

The Directory structure of JSP

The directory structure of JSP page is same as Servlet. We contain the JSP page outside the WEB-
INF folder or in any directory.

web-app

o .

WEB-INF ;

—i, classes
i * G

class files

web.xm|
E— = {/,!“2‘

Static Resources. (eg. Html,Images,css etc.)

The JSP API

The JSP API consists of two packages:

1. javaxserviet jsp

2. javaxservletjsp.tagext

javax.servlet.jsp package

The javaxservlet)sp package has two interfaces and classes.The two interfaces are as follows:

1 JspPage
2. HttpJspPage

The classes are as follows:

o JspWriter

o

PageContext

o

JspFactory

(o]

JspEnginelnfo

O

JspException

o

JspError

The JspPage interface

According to the JSP specification, all the generated servlet classes must implement the JspPage
interface. It extends the Servlet interface. It provides two life cycle methods.

(Servlet

extends

(JspPage

extends

HttpJspPage

Methods of JspPage interface

~. public void jsplInit(): It is invoked only once during the life cycle of the JSP when JSP page is
requested firstly. It is used to perform initialization. It is same as the init() method of Servlet
interface.

2. public void jspDestroy(): It is invoked only once during the life cycle of the JSP before the
JSP page is destroyed. It can be used to perform some clean up operation.

The HttpJspPage interface

The HttpJspPage interface provides the one life cycle method of JSP. It extends the JspPage

interface.

Method of HttpJspPage interface:

1. public void _jspService(): It is invoked each time when request for the JSP page comes to the
container. It is used to process the request. The underscore _ signifies that you cannot override

this method.

We will learn all other classes and interfaces later.

T
LTJ'L‘ C Ld.: Ie -'!"‘f‘ [} Cenviael :

. Lovad SewvlelF ela te

5. Covare Sewiler frgrance

thhﬂa

2. tall fhe Ini(=)

3 _‘u_

g. Call the Suwvict
(-, =) paarihed

C. Call the z{n‘lihﬁ}[] .

'3 Mithed .

4 A EL;LFhlde in Dhe Aabove .:Ug_Tﬂm, Haeve_

ave thvee Srafis ofF o Sevvler) new, Neady anc

L& The gewler fs {0 Ao Arare f gew/ltE ntrance

'ig E-.;ﬂ._t"Ef['

¥ Afren 1m.-ﬂ'._-‘nj the fair() mefhed, Sewler

- fo s in K rr'L:t.:."-.r-J 4AFale.
A fdn the Tt_n_clf_J Arare, Sen ok Ff"""f”"mg all Mie

tacks - panen e web coatninegr Tavores Mae

dEEhELJ['J metiod, 1t Shifrt 1o e end state.

b Sewlet glate ww leade d

The clatsloadey i vitponfible o load the
Sevylel Class: “The Sewilds Class 12 loaded when

nlt i’;.'l-'-lr- "I-!_.E-'«\i‘l-rlt-';."_ t‘f,"l I"ﬂE _'E.L\-vruf "}5 TEI*TUE‘A

’-:L& Hhe wley feoabkadiaer.
‘——______—

: . [4 - i ¥,
1A rl'l..*“"u‘lIlTrr“ . tF catls the BL T 4

epyvi Ll

II-';

|i1'|*-f_-| IF'JI.”"'" Hhek S vl Lf it ToiMaliced
14 t

f'ﬂ[I-J ol L

E',ulﬂh‘”*'
M
11u|r_1|7|: v d ~_';-:*1‘~.-'-fr-{E::'.a'ltr'[;ffc.iilfilr '|n1.,uf1l','i‘.£-wfff'

Response ve :pcnsrj

rrows SevvietExcephon | TOEAtephon .

4]

g I"h h_J n.x-tfrnr::d it Tnvoke d

'Thp Lade N - Tals adr e ': ;_l,“fr tme deshoy e4fmo d

hn.itn.”]nr"r.'*.x:n.'n] Fr ¢ Sewder ril"'tlﬂ a N oy -i'\:}ﬂ""l

e Suwice. 1AF h_]'w.-‘ tme Sewler an pppoitua-

'1| L '1[_- {" [.r__._.-"'| .,_q_lE'n !‘I;..".I-J P aT=u i :le I."".ﬂl.l..l-h'
)
h.'“u_intl-uhll , e o ele

? L iﬂ'ﬂ-'-.: -

ril_Lh”f "..-'t'.i.'.i Ar Hron lr)]

H

i
I

0, Sg~vied insrance g (Cred

_ instance
The wWeb contafneg ¢veatts M

. rhe Sendlel Clag

ﬂt a c-l!'l"h'll_.r -ﬂ..t-l‘{\ Iflﬂ Atr‘lgﬂ

e ﬂl‘"lh-d‘ onee

e nlt
The Seavier lnskante fs (veo |

i Fae cevvled .l;t" Lujr_.!l

ToEF method T Taveked

—— e

L wleb Centainer Cally Uht init mMerhoad |

on I_-,d encd -:'n.i es Lok 1nﬂ e Sew|olr iothase,
The o7t muwed 2 used o P alles the
Qewler: dF 2 flne 1;1;1- E.vd tle- s Uhod of

The javex:geav [et. Sewl el inttata e -

o

ﬁ;lnfny_‘

-

Fq_ujl;r. VO A mir(_g;_wrt?'ﬂ::-ﬂf-hj r_ﬂﬂﬁf—ﬁ) Mhvowes

Sewl LI'E-J({-LFHEIH

Sq_.n-,rq_."“-; Miotheo d I'II!, ThAveoEe d

“The Web Cearainey Catlt the Sewvice mMethod

ecch Yime pdhen yiquest E’U‘ the Semvlol

15 Teceived. ‘jl—- Sewli- Mo (aTals 'rqﬁqﬂﬂ.ﬂ;foﬂ;h'

h‘l"“ﬂt.di the t":"l-"..i" Mhaee o e 4 o AFEE":"THE_A

ﬂi‘.ﬁ'ﬂ Wi tl'ﬂl.n 'Ef'l.'n‘_!‘, [4o E-E,-ﬁ':f'l e bn
b Ol .

Web Technologies
UNIT-V

Ruby s a pure object-oriented programming language. It was created in 1993 by Yukihiro
Matsumoto of Japan.

You can find the name Yukihiro Matsumoto on the Ruby mailing list at www.ruby-lang.org.
Matsumoto is also known as Matz in the Ruby community.

Ruby is "A Programmer's Best Friend".

Ruby has features that are similar to those of Smalltalk, Perl, and Python. Perl, Python, and
Smalltalk are scripting languages. Smalltalk is a true object-oriented language. Ruby, like
Smalltalk, is a perfect object-oriented language. Using Ruby syntax is much easier than using
Smalltalk syntax.

Features of Ruby
» Ruby is an open-source and is freely available on the Web, but it is subject to a
license.
« Ruby s a general-purpose, interpreted programming language.
« Ruby is a true object-oriented programming language.
» Ruby is a server-side scripting language similar to Python and PERL.
» Ruby can be used to write Common Gateway Interface (CGI) scripts.
* Ruby can be embedded into Hypertext Markup Language (HTML).
« Ruby has a clean and easy syntax that allows a new developer to leam Ruby very

quickly and easily.
» Ruby has similar syntax to that of many programming languages such as C++and
Perl.

¢ Ruby is very much scalable and big programs written in Ruby are easily maintainable.
« Ruby can be used for developing Internet and intranet applications.
« Ruby can be installed in Windows and POSIX environments.
« Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.
o Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.
Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

Tools You Will Need

For performing the examples discussed in this tutorial, you will need a latest computer like
Intel Core i3 or 15 with a minimum of 2GB of RAM (4GB of RAM recommended). You also
will need the following software:

¢ Linux or Windows 95/98/2000/NT or Windows 7 operating system

o Apache 1.3.19-5 Web server

« Internet Explorer 5.0 or above Web browser

« Rubyl85
This tutorial will provide the necessary skills to create GUI, networking, and Web
applications using Ruby. It also will talk about extending and embedding Ruby applications.

Popular Ruby Editors:
To write your Ruby programs, you will need an editor:
« If you are working on Windows machine, then you can use any simple text editor like

Notepad or Edit plus.

¢ VIM (Vi IMproved) is very simple text editor. This is available on almost all Um
machines and now Windows as well. Otherwise, your can use your favorite vi editor
to writc Ruby programs.

o RubyWin is a Ruby Intcgrated Development Environment (IDE) for Windows.

o Ruby Development Environment (RDE) is also very good IDE for windows users.

Interactive Ruby (IRb):

Interacuve Ruby (IRb) provides a shell for experimentation. Within the IRb shell, you can
mmediately view expression results, line by line.

[his tool comes along with Ruby installation so you have nothing to do extra to have IRb
working.

Justtype irb at your command prompt and an Interactive Ruby Session will start as given
below:
> 0.6.1(99/09/16)
1rb(main) : 001:0> def hello
Lrbimain) 1 002:1> out = "Hello World"
1rb(main) :003:1> puts out
):004:1> end

:0> hello

3
w

-
o=
(=]
(&)

o

irb(main) :006:0>

Ruby Syntax:

Letus write a simple program in ruby. All ruby files will have extension .rb. So, put the
following source code in a test.rb file.
#!/usr/bin ruby -w

puts "

'"Hello, Ruby!";

Here, T assumed that you have Ruby interpreter available in /usr/bin directory. Now, try to
run this program as follows:

$ ruby test.rb

This will produce the following result:

Hello, Ruby!
Whitespace in Ruby Program:

Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except
when they appear in strings. Sometimes, however, they are used to interpret ambiguous

statements. Interpretations of this sort produce warnings when the -w option is enabled.
Example:

2 + b 1s interpreted as a+b (Here a is a local variable)

2 +b 1s interpreted as a(+b) (Here a is a method call)

Line Endings in Ruby Program:

Ruby interprets semicolons and newline characters as the ending of a statement. However, if

Ruby encounters operators, such as +, -, or backslash at the end of a line, they indicate the
continuation of a statement.

Ruby Identifiers:

Identifiers are names of variables, constants, and methods. Ruby identifiers are ¢
[t mean Ram and RAM are two different idendifiers in Ruby.

Ruby identifier names may consist of alphanumeric characters and the underscore
_)

Reserved Words:

The following list shows the reserved words in Ruby. These reserved words m
as constant or variable names, They can, however, be used
BEGIN do next then

ase sensitive.

character (

ay not be used
as method names.

END ¢lse il true
alias clsit not undef
and end or unless
begin - ensure redo until

break false rescue when

case for retry while
class it return yield
det in self FILE

defined? module super__ LINE

Here Document in Ruby:

"Here Document” refers to build strings from multiple lines. Following a << you can specify
a string or an identifier to terminate the string literal, and all lines following the current line

up to the terminator are the value of the string.

If the terminator is quoted, the type of quotes determines the type of the line-oriented string -
literal. Notice there must be No space between << and the terminator.

Here are different examples:

#!/usr/bin ruby -w

the first way of creating
ument ie. multiple line string.

0

Print <<"EOF"; f same as above
This is the second way of creating
here document je. multiple line string.

EOF

print <<'EOC" # execute cocmmands

echo hi there
echo lo there

print <<"foo", <<"bar" # you can stack them
I said foo.
foo I said bar.

This will produce the following result;
This is the first way of creating
her document je. multiple line string.
This is the second way of creating
her document ie. multiple line string.
hi there
lo there
I said foo.
I said bar.

Ruby BEGIN Statement
Syntax:

BEGIN {
code

J

Declares code to be called before the program is run.

Example:

#!/usr/bin/ruby

puts "This is main Ruby Program"

BEGIN ({

puts "lnitializing Ruby Program"
| b
This will produce the following result:
Initializing Ruby Program
This 1s main Ruby Program

Ruby END Statement
Syntax:

END {
code
}

Declares code to be called at the end of the program.
Example:

#!/usr/bin/ruby
puts "This is main Ruby Program"

END {

puts "Terminating Ruby Program"
}
BEGIN ({

puts "Initializing Ruby Program"
}
This will produce the following result:
Initializing Ruby Program
This is main Ruby Program
Terminating Ruby Program

Ruby Comments:

A comment hides a line, part of a line, or several lines from the Ruby interpreter. You can use
the hash character (#) at the beginning of a line:

I am a comment. Just ignore me.

Or, a comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Here is another form. This block comment conceals several lines from the interpreter with
=begin/=end:

=pbegin

This is a comment.

This is a comment, too.

This 1s a comment, too.

I said that already.

=end

Ruby Classes:
Ruby is a perfect Object Oriented Programming Language. The features of the object-
oriented programming language include:

« Data Encapsulation:

« Data Abstraction:

o Polymorphism:
» Inhentance:

: Wyeet- nte Y i |

,\nl object-onented program involves classes and objects. A class is the blucprint from which
mndividual plncclx are created. In object-oriented terms, we say that your hicycle is an
nstance of the class of objecty known as bicyceles,

ake the ¢ s of anv vehisle Tt - " :
Take the example of any vehicle. It comprises wheels, horsepower, and fuel or gas tank

capacity. [hese characteristics torm the data members of the class Vehicle. You can
differentiate one vehicle from the other with the help of these characteristics.
\ vehicle can also have certain functions, such as halting, driving, and speeding. Even these
functions form the data members of the class Vehicle. You can, therefore, define a class as a
combination of characteristics and functions.
A class Vehicle can be defined in Java as follows :
Class Vehicle
1

Nun Der no o [th“L‘ }.h

Number horsepower
Characters type of tank
Number pacity

Ca
-
n

speeding

1
}
Function driving
{
}
Function halting
{
}

By assigning different values to these data members, you can form several instances of the
class Vehicle. For example, an airplane has three wheels, horsepower of 1,000, fuel as the
type of tank, and a capacity of 100 liters. In the same way, a car has four wheels, horsepower
of 200, gas as the type of tank, and a capacity of 25 litres.

Defining a Class in Ruby:

To implement object-oriented programming by using Ruby, you need to first learn how to
create objects and classes in Ruby.

A class in Ruby always starts with the keyword class followed by the name of the class. The
name should always be in initial capitals. The class Customer can be displayed as:

class Customer

end

You terminate a class by using the keyword end. All the data members in the c/ass are
between the class definition and the end keyword.

Variables in a Ruby Class:
Ruby provides four types of variables:

» Local Variables: Local variables are the variables that are defined in a method. Local
variables are not available outside the method. You will see more details about
method in subsequent chapter. Local variables begin with a lowercase letter or .

+ Instance Variables: Instance variables are available across methods for any
particular instance or object. That means that instance variables change from object to
object. Instance variables are preceded by the at sign (@) followed by the variable
name.

o Class Variables: Class variables are available across different objects. A class
variable belongs to the class and is a characteristic of a class. They are preceded by
the sign @(@ and are followed by the variable name.

« Global Variables: Class variables are not available across classes. [f you want to
have a single variable, which is available across classes, you need to define a global
variable. The global variables are always preceded by the dollar sign (5).

Example:
Isi s plaee variahla fRY70) o 2 .
L slng.lhs. class variable @(@no_of customers, you can determine the number of objects that
are being created. This enables in deriving the number of customers.
class Customer
@€no_of customers=0

end

Creating Objects in Ruby using new Method:

Objects are instances of the class. You will now learn how to create objects of a class in
Ruby. You can create objects in Ruby by using the method new of the class.

The method new is a unique type of method, which is predefined in the Ruby library. The
new method belongs to the c/ass methods.

Here is the example to create two objects custl and cust2 of the class Customer:

custl = Customer. new
cust2 = Customer. new
Here, custl and cust2 are the names of two objects. You write the object name followed by
the equal to sign (=) after which the class name will follow. Then, the dot operator and the
keyword new will follow.

Custom Method to create Ruby Objects :

You can pass parameters to method new and those parameters can be used to initialize class
variables.
When you plan to declare the new method with parameters, you need to declare the method
initialize at the time of the class creation.
The initialize method is a special type of method, which will be executed when the new
method of the class is called with parameters.
Here is the example to create initialize method:
class Custcmer
@no_of customers=0
def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr
end
end
In this example, you declare the initialize method with id, name, and addr as local variables.

Here, def and end are used to define a Ruby method initialize. You will learn more about
methods in subsequent chapters.

In the initialize method, you pass on the values of these local variables to the instance
variables @cust_id, (@cust_name, and @cust_addr. Here local variables hold the values that
are passed along with the new method.

Now, you can create objects as follows:
custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")
cust2=Customer.new("2", "poul", "New Empire road, Khandala")

Member Functions in Ruby Class:

In Ruby, functions are called methods. Each method in a class starts with the keyword def
followed by the method name.

The method name always preferred in lowercase letters. You end a method in Ruby by using
the keyword end.

Here is the example to define a Ruby method:

class Sample
def function
statement 1

na

Here, statement 1 and statement 2 are part of the body of the method function inside the class
Sample. These statments could be any valid Ruby statement. For example we can put a
method purs to print Hello Ruby as follows:
*lass Sample

def hello

puts "Hello Ruby!"
end

ena

Now mn the following example, create one object of Sample class and call hello method and
see the result:
#1/usr/bin/ruby

class Sample
def hello
puts "Hello Ruby!"

sing above class to create objects
= Sample. new
h

Ruby Variables

Variables are the memory locations which hold any data to be used by any program.

There are five types of variables supported by Ruby. You already have gone through a small
description of these variables in previous chapter as well. These five types of variables are
explained in this chapter.

Ruby Global Variables:

Global variables begin with $. Uninitialized global variables have the value nil and produce
warnings with the -w option.

Assignment to global variables alters global status. It is not recommended to use global
variables. They make programs cryptic.

Here 1s an example showing usage of global variable.
#!/usr/bin/ruby

global variable = 10
class Classl
def print global
puts "Global variable in Classl is #$global variable"
end
end
class Class2
def print global
puts "Global variable in Class2 is #Sglobal variable"

end
end
classlobj = Classl.new
classlobj.print_global
class2obj = Class2.new

class2obj.print global
Here $global_variable is a global variable. This will produce the following result:

NOTE: In Ruby you CAN access value of any variable or constant by putting a hash (#)
character just betore that variable or constant.

Global variable in Classl is 10

Global variable in Class? is 10

.
Ruby Instance Variables:
Instance variables begin with (@. Uninitialized instance variables have the value nil and
produce warnings with the -w option.
Here is an example showing usage of Instance Variables.
#!/usr/bin ruby

class Customer

def initialize(id, name, addr)
Qcust_id=id
@cust name=name
@cust_ addr=addr

end B

def display details()
puts "Customer id #Qcust id"
puts "Customer name #@cust name"
puts "Customer address #@cust addr"

end
end
Create Objects
custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya"™)
cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods
custl.display details()

cust2.display details()

Here, @cust_id, @cust_name and @cust_addr are instance variables. This will produce the

following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya
Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Ruby Class Variables:

Class variables begin with @@ and must be initialized before they can be used in method

definitions.
Referencing an uninitialized class variable produces an error. Class variables are shared

among descendants of the class or module in which the class variables are defined.
Overriding class variables produce warnings with the -w option.

Here is an example showing usage of class variable:

#!/usr/bin/ruby

class Customer

@@no_of customers=0

def initialize(id, name, addr)
@cust_id=id
@cust name=name
@cust_addr=addr
@@no_of customers += 1

end -

def display details()
puts "Customer id #@cust_id"
puts "Customer name #@cust name"
puts "Customer address #@cust addr"

end

def total no of customers ()

puts "Total number of customers: #@@no_of customers"
end -
end
Create Objects
custl=Customer. ne C i
cu r{ E' tomer.new("1", "John", "Wisdom Apartments, Ludhiya™)
custvauxiwmcr.new("J", "Poul",

"New Empire road, Khandala")

Call Methods
custl.total»no of customers ()
ustl.totalﬁnogot_customers()

Py N . . Tt it
Here @@no_of customers is a class variable. This will
otal number of customers: 1

2

9]

produce the following result:

[otal number of customers:

Ruby Local Variables:
Local variables begin with a lowercase letter or
class, module, def; or do to the corresponding enc
brace {}.

When an uninitialized local variable is referenced, it is interpreted as a call to a method that
has no arguments.
Assignment to uninitialized local variables also serves as variable declaration. The variables

start to exist until the end of the current scope is reached. The lifetime of local variables is
determined when Ruby parses the program.

In the above example local variables are id, name and addr.

Ruby Constants:

Constants begin with an uppercase letter. Constants defined within a class or module can be
accessed from within that class or module, and those defined outside a class or module can be
accessed globally.

Constants may not be defined within methods. Referencing an uninitialized constant produces

an error. Making an assignment to a constant that is already initialized produces a warning.
#!/usr/bin/ruby

. The scope of a local variable ranges from
d or from a block's opening brace to its close

class Example

VAR1 = 100
VARZ2 = 200
def show

puts "Value of first Constant is #{VAR1}"
puts "Value of second Constant is #{VAR2}"
end
end

Create Objects

object=Example.new ()

object.show . ‘ _

Here VAR and VAR2 are constant. This will produce the following result:
Value of first Constant is 100

Value of second Constant is 200

Ruby Pseudo-Variables: | |
They are special variables that have the appearance gf local variables but behave like
constants. You can not assign any value to these variables.

« self: The receiver object of the current method.

o true: Value representing true.

« false: Value representing false.

« nil: Value representing undefined.

. FILE : The name of the current source file.

« LINE : The current line number in the source file.

Ruby Basic Literals: | ‘
The rules Ruby uses for literals are simple and intuitive. This section explains all basic Ruby
Literals.

Integer Numbers:

Ruby supports integer numbers. An integ
.. Integers with-in this range are objects 0
stored in objects of class Bignum.

You write integers using an optional leading sign, an optional base 1
for hex. or Ob for binary), followed by a string of digits in the appro
characters are ignored in the digit string.

You can also get the integer value corresponding to
by preceding it with a question mark.

n range from -230 to 230-1 0T -262 10 262-

er number ca _
is range are

f class Fixnum and integers outside th

ndicator (0 for octal, 0x
priate base. Underscore

an ASCII character or escape sequence

Example:

123 # Fixnum decimal

1 234 # Fixnum decimal with underline
-500 # Negative Fixnum

0377 # octal

Oxff # hexadecimal

0pbl1011 # binary

2a 4 character code for 'a’

2\n 4+ code for a newline (0x0a)
12345678901234567890 # Bignum

NOTE: Class and Objects are explained in a separate chapter of this tutorial.

Floating Numbers:
Ruby supports integer numbers. They are also numbers but with decimals. Floating-point

numbers are objects of class Float and can be any of the following:

Example:

123.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required

4e+20 4 sign before exponential
String Literals:

Ruby strings are simply sequences of 8-bit bytes and they are objects of class String. Double-
quoted strings allow substitution and backslash notation but single-quoted strings don't allow

substitution and allow backslash notation only for \\ and \

Example:
4! /usr/bin/ruby -w

puts 'escape using R
puts 'That\'s right';
This will produce the following result:

escape using "\"
That's right
You can substitute the value of any Ruby expression into a string using the sequence #{ expr

}. Here, expr could be any ruby expression.
#!/usr/bin/ruby -w

puts "Multiplication Value : #{24*60*60}";

This will produce the following result:
Multiplication Value : 86400

Backslash Notations:

Following is the list of Backslash notations supported by Ruby:
Notation Character represented

\n Newline (0x0a)

\r Carnage return (0x0d)

\f Formteed (0x0c¢)

\b Backspace (0x08)

\a Bell (0x07)

\¢ Escape (0x1b)

\s Space (0x20)

\nnn Octal notation (n being 0-7)
\xnn

Hexadecimal notation (n being 0-9, a-f, or A-F)
\ex, \C-x Control-x

\M-x Meta-x (¢ | 0x80)

\M-\C-x Meta-Control-x

\X Character x

Ruby Ranges:
A Range represents an interval.a set of values with a start and an end. Ranges may be
constructed using the s..c and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.

A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5) means it includes 1, 2,
3. 4 values.

Example:
#!/usr/bin/ruby
(10..15) .each do |n|
print n, ' '
end
This will produce the following result:
10 11 12 13 14 15

Ruby Conditional statements:

Ruby if...else Statement:
Syntax:

if conditional [then]
code. ..

[elsif conditional [then]
code...]...

[else code...]

end

if expressions are used for conditional execution. The values false and nif are false, and
everything else are true. Notice Ruby uses elsif, not else if nor elif.

Executes code if the conditional is true. If the conditional is not true, code specified in the
else clause is executed.

An if expression's conditional is separated from code by the reserved word then, a newline, or
a semicolon.

Example:
#!/usr/bin/ruby

x=1

puts "X 18 greater than .
21sif X <= 2 and x!=0

"l can't gquess the number"

Ruby if modifier:
b\ ntax:

e 1f condition

L\uulu code if the conditional is true.

Example:

#!/usr/bin/ruby

Sdebug=1
erint "debug\n" if Sdebug
Thl\ will produce the following result:

aedug

Ruby unless Statement:
S) ntax:

S conditional [then]

unle
-

f[/

.Q.

’/l

S
C
e

0

t/]

~
Q

end

Executes code if conditional is false. If the conditional is true, code specified in the else
clause is executed.

Example.

usr/bin/ruby

x=1
unless x>2
puts "x is less than 2"
else
puts "x is greater than 2"
end

This will produce the following result:
x 1s less than 2

Ruby unless modifier:
Syntax:

zode unless conditional
Executes code if conditional is false.

Example:
#!/usr/bin/ruby

Svar = 1
print "1 == Value is set\n" if Svar
print "2 -- Value is set\n" unless $var

Svar = false
print "3 -- Value is set\n" unless $var

This will produce the following result:
1 -- Value is set
3 -- Value is set

Ruby case Statement

Syntax:

case expression
i n
[when expression [, expression ...] [then]

code]..
[else
code]
o i 1 === operator
Compares the expression specified by case and that specified by when using the op
and executes the code of the when clause that matches.
The expression specified by the when clause is evaluated as the left operand. If no when

clauses match, case executes the code of the else clause. i
’ ine
A when statement's expression is separated from code by the reserved word then, a newline,

or a semicolon.

Thus:

case expr0

when expri, expr2
stmt1l

when expr3, expr4
stmt2

else
stmt3

end

is basically similar to the following:

_tmp = expro

if exprl === _tmp || expr2 === _tmp
stmtl

elsif expr3 === _tmp || exprd4 === _tmp
stmt2

else
stmt3

end

Example:

#!/usr/bin/ruby

$age = 5

case $age

when 0 .. 2
puts "baby"

when 3 .. ¢
puts "little child"

when 7 .. 12
puts "chilg"

when 13 .. 18

puts "youth"
elseputs "adult"

end

This will produce the following result:
little child

Ruby Looping statements:

Loops in Ruby are used to execute the same block of code a specified number of times. This
chapter details a] the loop statements Supported by Ruby.

Ruby while Statement:

Svyntax:

end
Executes code while conditional is true. A while loop's conditional 1s separated from code by

the reserved word do, a newline, backslash \, or a semicolon ;.

Example:
#!/usr/bin/ruby
while $§1 < $num do
uts ("Inside the loop 1 = #$i")
This will produce the following result:
side the loop i = 0
the loop i 1
the loop i = 2
the ::f 1 3
the loop i = 4

while modifier:

coge while
O
begin
code
end while conditional

Executes code while conditional is true.
If a while modifier follows a hegin statement with no rescue or ensure clauses, code is

executed once before conditional 1s evaluated.

Example:

/usr/bin/ruby

¥/

peqgin
puts("Inside the loop 1 = #5i")

S1 +=1

v <

end while 51 < Snum

This will produce the following result;

Inside the loop 1 = 0
Inside the loop i 1
Inside the loop 1 = 2
Inside the loop i = 3
Inside the loop 1 = 4

thy until Statement:

until conditional [do]

code

end
Executes code while conditional is false. An until statement's conditional is separated from

code by the reserved word do, a newline, or a semicolon.

Example:

4! /usr/bin/ruby

$1 =0
$num = 5
until $1 > $num do
puts ("Inside the loop i = #Si")
$1 +=1;
end
This will produce the tollowmg result:
Inside the loop 1 = 0
Inside the loop i
Inside the loop
Inside the loop
Inside the loop
Inside the loop 5

Ruby until modifier:
Syntax:

code until conditional

Heobe e e
|
Bow N

OR

begin
code
end until conditional
Executes code while conditional is false.
If an until modifier follows a begin statement with no rescue or ensure clauses, code is

executed once before conditional is evaluated.

Example:

#!/usr/bin/ruby

$1 =0
Snum =
begin
puts("Inside the loop i = #$Si")
$i +=1;
end until $i > $num
This will produce the following result:
Inside the loop 1 = 0
Inside the loop =
Inside the loop
Inside the loop
Inside the loop
Inside the loop i = 5

Ruby for Statement:
Syntax:

5

BW N

R ST ST SR

for variable [, variable ...] in expression [do]
code

end

Executes code once for each element in expression.

Example:

#!/usr/bin/ruby

for i in 0..5
puts "Value of local variable is #{i}"

end

Here, we have defined the range 0.5, The statement for i in 0.5 will allow i to take values in
the range from 0 to 5 (including 5). This will produce the following result:
Value ot local variable is 0
Value of local variable is 1
f local variable is 2
ue of local variable is 3
t local variable is 4
Value of local variable is §
A for..in loop is almost exactly equivalent to:
(expression) .each do |variable[, variable...]| code end
except that a for loop doesn't create a new scope for local variables. A for loop's expression is
separated from code by the reserved word do, a newline, or a semicolon.
Example:

#!/usr/bin/xruby

(0..5).each do i}
puts "Value of local variable is #(i}"
end

This will produce the following result:

Value of local variable is 0
of local variable is
of local variable is

Hh

Value

0
Value o
o}

local variable is
local variable is
local variable is

N

U oswho

o

value

Ruby break Statement:
Syntax:

break
Terminates the most internal loop. Terminates a method with an associated block if called
within the block (with the method returning nil).

Example:

41 /usr/bin/ruby

for i in 0..5

if i > 2 then

break

end

puts "Value of local variable is #{1}"
end
This will produce the following result:
value of local variable is 0
value of local variable is 1
value of local variable 1is 2

Ruby next Statement:
Syntax:

next . .
Jumps to next iteration of the most internal loop. Terminates exccution of a block if called

within a block (with yield or call returning nil).

Example:
4! /usr/bin/ruby

for i in 0..5
if i < 2 then
next
end .
puts "Value of local variable is #{i}"

1

T'his will produce the tollowing result:
Value of local variable :3
Value of local variable is 3
Value of local variable is 4
Value of local variable is 5

Ruby redo Statement:

Syntax:

redo

Rlestarls this iteration of the most internal loop, without checking loop condition. Restarts
vield or call if called within a block.

Example:

#!/usr/bin/ruby

)

for i in 0..5
iEids € "2 Ehen
puts "Value of local variable is #{i}"
reao

end

This will produce the following result and will go in an infinite loop:
Value of local variable is 0

Value of local variable is 0

Ruby retry Statement:
Syntax:

retry
If retry appears in rescue clause of be
body.
begin
do something # exception raised

gin expression, restart from the beginning of the 1begin

rescue
handles error
retry # restart from beginning
end
If retry appears in the iterat
invocation of the iterator ca

for i in 1..5
retry if some_condition 4 restart from i == 1

or, the block, or the body of the for expression, restarts the
[I. Arguments to the iterator is re-evaluated.

end

Example:

4! /usr/bin/ruby

for i in 1..5
retry if 1 > 2
puts "Value of local variable is g{i}"

end

This will produce the following result

value of local variable is 1

value of local variable is 2

value of local variable is 1

value of local variable 1s 2

i
2

and will go in an infinite loop:

value of local variable 1is
value of local variable 1is

............................

Ruby Methods

Ruby methods are very similar to functions in any other programming language. Ruby
methods are used to bundle one or more repeatable statements into a single unit.
Method names should begin with a lowercase letter. If you begin a method name with an

uppercase letter, Ruby might think that it is a constant and hence can parse the call
incorrectly.

Methods should be defined before calling them, otherwise Ruby will raise an exception for
undefined method invoking.

Syntax:
def method name [([arg [= default]]...[, * arg [, &expr]])]

expr..

nd

o vou can define a simple method as follows:

def method name

expr. .
end
You can represent a method that accepts parameters like this:
def method_name (varl, var2)

expr..
end
You can set default values for the parameters which will be used if method is called without
passing required parameters:
def method name (varl=valuel, var2=value2)

expr. .
end
Whenever you call the simple method, you write only the method name as follows:
metho j name
However, when you call a method with parameters, you write the method name along with
the parameters, such as:
methed name 25, 30
The most important drawback to using methods with parameters is that you need to
remember the number of parameters whenever you call such methods. For example, if a

method accepts three parameters and you pass only two, then Ruby displays an error.
Example:

$!'/usr/bin/ruby

I~

def test(al="Ruby", a2="Perl")
puts "The pruquTang language is #{al}"
puts "The programming language is #{az2)"

end

t‘:ST' IICII “C++ll

test

Thl‘: will produce the following result:

The pr)qrammlnq language is C

The programming language is Ct+

The programming language is Ruby

The programming language is Perl

Return Values from Methods:

Every method in Ruby returns a value by default. This returned value will be the value of the
last statement. For example:
def test

i = 100

j = 10

k =0
a7 {-

This method, when called, will return the last declared variable k.

Ruby return Statement:

The refwrn statement in ruby is used to return one or more values from a Ruby Method.
Syntax:

return [(expr(’,' expr...]]

If more than two expressions are given, the array containing these values will be the return
value. If no expression given, nil will be the return value.

Example:

return

OR

return 12

OR

return 1,2,3

Have a look at this example:
#!/usr/bin/ruby

def test

i = 100

j = 200

k = 300
return i, Jj, k
end
var = test

puts var

This will produce the following result:
100

200

300

Class Methods:

When a method is defined outside of the class definition, the method is marked as private by
default. On the other hand, the methods defined in the class definition are marked as public
by default. The default visibility and the private mark of the methods can be changed by
public or private of the Module.
Whenever you want to access a method of a class, you first need to instantiate the class.
Then, using the object, you can access any member of the class.
Ruby gives you a way to access a method without instantiating a class. Let us see how a class
method is declared and accessed:
class Accounts

def reading charge

end

def Accounts.return date

end
end
See how the method return_date is declared. It is declared with the class name followed by a
period, which is followed by the name of the method. You can access this class method
directly as follows:
Accounts.return date
To access this method, you need not create objects of the class Accounts.

Ruby alias Statement:

[l,l:l: glg'lcs alms to methods or global variables. Aliases can not be defined within the method
ody. The alias of the method keep the current definition of the method, even when methods
are overridden,

M;}kll}g aliases t'on: the numbered global variables ($1, $2,...) is prohibited. Overriding the
built-in global variables may cause serious problems.

Syntax:

al?as nmethod-name method-name

alias global-variable-name global-variable-name
Example:

alias foo bar

alias $MATCH S$&

Here we have defined foo alias for bar and SMATCH is an alias for $&

Ruby undef Statement:

This c.ancels the method definition. An undef can not appear in the method body.
By using undef angi a[{as, the interface of the class can be modified independently from the
superclass, but notice it may be broke programs by the internal method call to self.

Syntax:

undef method-name

Example:

To undefine a method called bar do the following:
undef bar

Ruby Arrays

Ruby arrays are ordered, integer-indexed collections of any object. Each element in an array
is associated with and referred to by an index.

Array indexing starts at 0, as in C or Java. A negative index is assumed relative to the end of
the array - that is, an index of -1 indicates the last element of the array, -2 is the next to last
element in the array, and so on.

Ruby arrays can hold objects such as String, Integer, Fixnum, Hash, Symbol, even other
Array objects. Ruby arrays are not as rigid as arrays in other languages. Ruby arrays grow
automatically while adding elements to them.

Creating Arrays:

There are many ways to create or initialize an array. One way is with the new class method:
names = Array.new

You can set the size of an array at the time of creating array:

names = Array.new(20)

The array names now has a size or length of 20 elements. You can return the size of an array
with either the size or length methods:

#!/usr/bin/ruby

names = Array.new(20)

puts names.size # This returns 20

puts names.length # This also returns 20

This will produce the following result:

20

20

You can assign a value to each element in the array as follows:
#!/usr/bin/ruby

names Arrvay.new(4, "mac")

puts "#{names)"

his will produce the following result:

macmacmacmac

You can also use a block with new, populating each element with what the block evaluates
10!

#!/usr/bin/ruby

nums = Array.new(l0) (|e|l e = e * 2 }

puts "#{nums})"

This will produce the following result:

024681012141618

There is another method of Array, []. It works like this:

nums = Array.[] (1, 2, 3, 4,5)

One more form of array creation is as follows :

nums = Arrayll, 2, 3, 4,5]

The Kernel module available in core Ruby has an Array method, which only accepts a single

argument. Here, the method takes a range as an argument to create an array of digits:
$#!/usr/bin/ruby

digits = Array(0..9

puts "#{digits}"
This will produce the following result:
0123456789

Ruby Hashes

A Hash is a collection of key-value pairs like this: "employee" => "salary". It is similar to an
Array, except that indexing is done via arbitrary keys of any object type, not an integer index.
The order in which you traverse a hash by either key or value may seem arbitrary and will
generally not be in the insertion order. If you attempt to access a hash with a key that does not
exist, the method will return nil.

Creating Hashes:

As with arrays, there is a variety of ways to create hashes. You can create an empty hash with
the new class method:
months = Hash.new

You can also use new to create a hash with a default value, which is otherwise just nil:
months = Hash.new("month")

or

months = Hash.new "month"

When you access any key in a hash that has a default value, if the key or value doesn't exist,

accessing the hash will return the default value:
#!/usr/bin/ruby

menths = Hash.new("month")

puts "#{months[0]}"

puts "#(months([72]}"

This will produce the following result:
month

month
b1l livev/main /vy

"
x "d(H{at iy

"Rl Yty

This wall produce the following result:

Youce »anv Rubv obicct as
u can use any Ruby object as a key or value, even an array, so following example is a
vald one:

(1, "jan")

=> "January"

Ruby Iterators - each and collect

lterators are nothing but methods supported by collections. Objects that store a group of data
members are called collections. In Ruby, arrays and hashes can be termed collections.

lterators return all the elements of a collection, one after the other. We will be discussing two
iterators here, each and collect. Let's look at these in detail.

Ruby each Iterator:

The each iterator returns all the elements of an array or a hash.

collection.each do |variable|

Executes code for each element in colle
hash.

Example:

#!/usr/bin/ruby

ction. Here, collection could be an array or a ruby

ary, = 1,2,3,4,5]
ary.each do |1l
puts 1
end
This will produce the following result:

oo w N =

You always associate the each iterator with a block. It returns cach value of the array, one by
one. to the block. The value is stored in the variable i and then displayed on the screen.

Ruby collect Iterator: |

The collect iterator returns all the elements of a collection.

Syntax:

collection = collection.collect - \ ,
The collect method need not always be associated with a block. The collect method returns
the entire collection, regardless of whether it is an array ora hash.

Example:
§1/usr/bin/ruby

a = [1,2,?,4,5J
b = Array.nev
b = a.collectd jel e |

[his will produce the following result:

NOTE: The collect method is not the right way to do copying between arrays. There is
another method called a clone, which should be used to copy one array into another array.
You normally use the colleet method when you want to do something with each of the values
to get the new array. For example, this code produces an array b containing 10 times each
value n a.

#!/usr/bin/ruby
a = [1,2,3,4,9)
b a.collect{|Ix| 10*x}

Puts o

This will produce the following result;

LU

3

4"

Ruby File I/0, Directories

Ruby provides a whole set of I/O-related methods implemented in the Kernel module. All the
'O methods are derived from the class I0O.

The class /O provides all the basic methods, such as read, write, gets, puts, readline, getc,
and printf.

This chapter will cover all the basic /O functions available in Ruby. For more functions,
please refer to Ruby Class /0.

The puts Statement:

In previous chapters, you assigned values to variables and then printed the output using puts

statement.
The puts statement instructs the program to display the value stored in the variable. This will

add a new line at the end of each line it writes.

Example:

#!/usr/bin/ruby

= "This is variable one"
= "This is variable two"

N WM =

will produce the following result:
1s variable one
This 1is variable two
The gets Statement:
The gets statement can be used to take any input from the user from standard screen called
STDIN.

Example:

The following code shows you how to use the gets statement. This code will prompt the user
to enter a value, which will be stored in a variable val and finally will be printed on
STDOUT.

#!/usr/bin/ruby

- -
5 o
E=.
T

"
[¢

puts "Enter a value :"

val = gets

This will produce the tollowing result:
N1s 18 entered value

[his 1s entered value

The putc Statement:

Unlike the puss statement, which outputs the entire string onto the screen, the pute statement

can be used to output one character at a time.

Example:

The output of the following code is just the character H:
#!/usr/bin/ruby

ctrr="lall Ryt | W
str="Hello Ruby!
putc str

Thus will produce the following result:

The print Statement:

The print statement is similar to the puts statement. The only difference is that the puts
statement goes to the next line after printing the contents, whereas with the print statement
the cursor 1s positioned on the same line.

Example:

#!/usr/bin/ruby

rint "Hello World"
print "Good Morning"
This will produce the following result:
Hello WorldGood Morning
Opening and Closing Files:
Until now, you have been reading and writing to the standard input and output. Now, we will
see how to play with actual data files.

The File.new Method:

You can create a File object using File.new method for reading, writing, or both, according to
the mode string. Finally, you can use File.close method to close that file.

Syntax:
aFile = File.new("filename", "mode")
4 ... process the file

gFile.clocse

The File.open Method:

You can use File.open method to create a new file object and assign that file object to a file.
However, there is one difference in between File.open and File.new methods. The difterence
is that the File.open method can be associated with a block, whereas you cannot do the same

using the File.new method.
File.open("filename", "mode") do |aFile]|
§ ... process the file

end

Here is a list of The Different Modes of Opening a File:
Modes Description

r Reaéi—only mode. The file pointer is placed at the beginning of the file. This is the default
mode.

r+ Read-write mode. The file pointer will be at the beginning of thefile.

w Write-only mode. Overwrites the file if the file exists. If the file does not exist, creates a new
file tor writing.

w Read-write mode. Overwrites the existing file if the file exists. If the file does not exist,
creates a new tile for reading and writing,

a Write-only mode. The file pointer is at the end of the file if the file exists. That is, the file is in
the append mode. If the file does not exist, it creates a new file forwriting.
atr Read and write mode. The file pointer is at the end of the file if the file exists. The file opens

in the append mode. If the file does not exist, it creates a new file for reading and writing.
- .- . L
Reading and Writing Files:
The same methods that we've been using for 'simple' /O are available for all file objects. So,
gets reads a line from standard input, and aFile.gets reads a line from the file object aFile.
However, 1'O objects provides additional set of access methods to make our lives easier.

The sysread Method:

You can use the method sysread to read the contents of a file. You can open the file in any of
the modes when using the method sysread. For example :

Following is the input text file:

This 1s a simple text file for testing purpose.

Now let's try to read this file:

#!/usr/bin/ruby

File.new("input.txt", "r")

E ent = aFile.sysread(20)
puts content

outs "Unable to open file!"
end
This statement will output the first 20 characters of the file. The file pointer will now be
placed at the 21st character in the file.

The syswrite Method:

You can use the method syswrite to write the contents into a file. You need to open the file in
write mode when using the method syswrite. For example:

#!/usr/bin/ruby

aFile = File.new("input.txt", "r+")
if aFile
aFile.syswrite ("ABCDEF")
else
puts "Unable to open file!"
end
This statement will write "ABCDEF" into the file.

The each_byte Method:

This method belongs to the class File. The method each_byte is always associated with a

block. Consider the following code sample:
#!/usr/bin/ruby

aFile = File.new("input.txt", "r+")
if aFile
aFile.syswrite ("ARCDEF")
aFile.each_byte {|ch| putc ch; putc ?. }
else
puts "Unable to open file!"
end
Characters are passed one by one to the variable ch and then displayed on the screen as

follows:

e.8.t.1.n.9,

The 10.readlines Method:
The class File is a subclass of the class 10. The class 10 also has some methods, which can
be used to manipulate files.

One of the 10 class methods is /0. readlines. This method returns the contents of the file line

by line. The following code displays the use of the method /0. readlines:
#!/usr/bin/ruby

ax

[
lal

readlines ("input,txt")
)
v

=.10;
puts arr(

Pu Arr (1]

= L<d

4]

[n this code, the variable arr is an array. Each line of the file input.txt will be an element in

the array arr. Therefore, arr[0] will contain the first line, whereas arr[1] will contain the
second line of the file.

The 10.foreach Method:

This method also returns output line by line. The difference between the method foreach and
the method readlines is that the method foreach is associated with a block. However, unlike
the method readlines, the method foreach does not return an array. For example:
#!/usr/bin/ruby

10.foreach("input.txt") { |block| puts block}

This code will pass the contents of the file test line by line to the variable block, and then the
output will be displayed on the screen.

Renaming and Deleting Files:
You can rename and delete files programmatically with Ruby with the rename and delete
methods.

Following is the example to rename an existing file fest/.txt:
#!/usr/bin/ruby

Rename a file from testl.txt to test2.txt
File.rename("testl.txt", "test2.txt")

Following is the example to delete an existing file test2.txt:
#!/usr/bin/ruby

Delete file test2.txt
File.delete ("test2.txt")

File Modes and Ownership:
Use the chmod method with a mask to change the mode or permissions/access list of a file:

Following is the example to change mode of an existing file fest.xt to a mask value:
#!/usr/bin/ruby

file = File.new("test.txt", "w")
file.chmod(0755)

Following is the table, which can help you to choose different mask for chinod method:
Mask Description

0700 rwx mask for owner
0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

File Inquiries:

The following command tests whether a file exists before opening it:
#!/usr/bin/ruby

File.open("file.rb") if File::exists?("file.rb")

The following command inquire whether the file is really a file:
#!/usr/bin/ruby

This returns either true or false
File.file?("text.txt")

The following command finds out if it given file name is a directory:
#!/usr/bin/ruby

a directory

File::directory?("/usr/local/bin") # => true
a file
File::directory?("file.rb") # => false

The following command finds whether the file is readable, writable or executable:
#!/usr/bin/ruby

File.readable?("test.txt™) # => true
File.writable?("test.txt"™) # => true
File.executable?("test.txt") # => false

The following command finds whether the file has zero size or not:
#!/usr/bin/ruby

File.zero?("test.txt") # => true

The following command returns size of the file :
#!/usr/bin/ruby

File.size?("text.txt") # => 1002

The following command can be used to find out a type of file :
#!/usr/bin/ruby

File::ftype("test.txt") # => file

The ftype method identifies the type of the file by returning one of the following: file,
directory, characterSpecial, blockSpecial, fifo, link, socket, or unknown.

The following command can be used to find when a file was created, modified, or last

accessed :
#!/usr/bin/ruby

File::ctime("test.txt") # => Fri May 09 10:06:37 -0700 2008
File::mtime("text.txt") # => Fri May 09 10:44:44 -0700 2008
File::atime("text.txt™) # => Fri May 09 10:45:01 -0700 2008

Directories in Ruby:

All files are contaned within various directories, and Ruby has no problem handling these
too. Whereas the File class handles files, directories are handled with the Dir class.
Navigating Through Directories:

To change directory within a Ruby program, use Dir.chdir as follows. This example changes
the current directory to usr/bin.

Dir.chdir("/usr/bin")

You can find out what the current directory is with Dir.pwd:

puts Dir.pwd # This will return something like /usr/bin

You can ‘.‘.LI a list of the files and dnutmm within a specific directory using Dir.entries:
puts Dir.entries("/usr/bin").join("' ')

Dir.entries ulum\ an array with all 1hL entries within the specified directory. Dir.foreach
prov uh\ the xama teature:

D1 reach("/usr/bin") do |entryl
entry
enda
An even more concise way of getting directory listings is by using Dir's class array method:

Dir["/usr/bin

Creating a Directory:

The Dir. ml\du can be used to create directories:

Dir.mkdir ("mynewdir")

You can also set permissions on a new directory (not one that already exists) with mkdir:
NOTE: The mask 755 sets permissions owner, group, world [anyone] to rwxr-xr-x where r =
read, w = write, and x = execute.

Dir.mkdir("mynewdir", 755

Deleting a Directory:

The Dir.delete can be used to delete a directory. The Dir.unlink and Dir.rmdir perform

exactly the same function and are provided for convenience.
Dir.delete("testdir")

Creating Files & Temporary Directories:
Temporary files are those that might be created briefly during a program's execution but
aren't a permanent store of information.
Dir.tmpdir provides the path to the temporary directory on the current system, although the
method is not available by default. To make Dir.tmpdir available it's necessary to use require
"tmpdir.
You can use Dir.tmpdir with File join to create a platform-independent temporary file:
require 'tmpdir’

tempfilename = File.join(Dir.tmpdir, "tingtong")

tempfile = File.new(tempfilename, "w")

tempfile.puts "This is a temporary file”

tempfile.clcse

File.delete(tempfilename)
This code creates a temporary file, writes data to it, and deletes it. Ruby's standard library
also includes a library called Templfile that can create temporary files for you:
require 'tempfile'

f = Tempfile.new('tingtong"')

f.puts "Hello"

puts f.path

f.close

,n]

Ruby Regular Expressions

Acregular expression is a special sequence of characters that helps you match or find other
strings or sets of strings using a specialized syntax held in a pattern.

A regular expression literal is a pattern between slashes or between arbitrary delimiters
followed by %or as follows:

Syntax:

pattern

pattern/im # option can be specified
§r!/usr/local! # general delimited reqgular expression
Example:

#!/usr/bin/ruby

-
4

I

inel = "Cats are smarter than dogs";
2 = "Dogs also like meat™;

L1n

(]

if (linel =~ /Cats(.*)/)
puts "Linel contains Cats"

end

if (line2 =~ /Cats(.*)/)
puts "Line2 contains Dogs"

end

This will produce the following result:
Linel contains Cats
Regular-expression modifiers:
Regular expression literals may include an optional modifier to control various aspects of
matching. The modifier is specified after the second slash character, as shown previously and
may be represented by one of these characters:
Modifier Description
i Ignore case when matching text.

0 Perform #{} interpolations only once, the first time the regexp literal is
evaluated.

X Ignores whitespace and allows comments in regular expressions

m Matches multiple lines, recognizing newlines as normal characters
Interpret the regexp as Unicode (UTF-8), EUC, SJIS, or ASCII. If none of

u,e,s,n these modifiers is specified, the regular expression is assumed to usethe

source encoding.
Like string literals delimited with %Q, Ruby allows you to begin your regular expressions
with %r followed by a delimiter of your choice. This is useful when the pattern you are
describing contains a lot of forward slash characters that you don't want to escape:
Following matches a single slash character, no escape required
srl/|

Flag characters are allowed with this syntax, too
Fr(</(.*)>]1
Regular-expression patterns:

Except for control characters, (+?.* A $()[]{} [V), all characters match themselves. You
can escape a control character by preceding it with a backslash.
Following table lists the regular expression syntax that is available in Ruby.

Pattern Description

[.]

[~

re*

re+

re?

re{ n}
re{n,}
re{n, m}
alb

(re)

(?imx)
(?-imx)

(?:re)
(?imx: re)
(?-imx: re)
(?#...)
(?=re)
(?'re)
(?>re)
\w

\W

\s

\S

\d

\D

\A

\Z

\z

\G

\b

\B

\n, \t, etc.
\1..\9
\10

Matches beginning of line.
Matches end of line.

Matches any single character except newline. Using m option allows itto
match newline as well.

Matches any single character in brackets.

Matches any single character not in brackets

Matches 0 or more occurrences of preceding expression.

Matches 1 or more occurrence of preceding expression.

Matches 0 or 1 occurrence of preceding expression.

Matches exactly n number of occurrences of preceding expression.
Matches n or more occurrences of preceding expression.

Matches at least n and at most m occurrences of preceding expression.
Matches either a or b.

Groups regular expressions and remembers matched text.

Temporarily toggles on i, m, or x options within a regular expression. Ifin
parentheses, only that area is affected.

Temporarily toggles off i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

Groups regular expressions without remembering matched text.
Temporarily toggles on i, m, or x options withinparentheses.
Temporarily toggles off i, m, or x options within parentheses.
Comment.

Specifies position using a pattern. Doesn't have arange.
Specifies position using pattern negation. Doesn't have arange.
Matches independent pattern without backtracking.

Matches word characters.

Matches nonword characters.

Matches whitespace. Equivalent to [\t\n\r\f].

Matches nonwhitespace.

Matches digits. Equivalent to [0-9].

Matches nondigits.

Matches beginning of string.

Matches end of string. If a newline exists, it matches just before newline.
Matches end of string.

Matches point where last match finished.

Matches word boundaries when outside brackets. Matches backspace
(0x08) when inside brackets.

Matches nonword boundaries.
Matches newlines, carriage returns, tabs, etc.
Matches nth grouped subexpression.

Matches nth grouped subexpression if it matched already. Otherwise
refers to the octal representation of a character code.

Regular-expression Examples:
Literal characters:

Example Description
[ruby/ Match "ruby".
¥ Matches Yen sign. Multibyte characters are supported in Ruby 1.9 and
Ruby 1.8.

Character classes:

Example Description
/[Rr]uby/ Match "Ruby" or "ruby"
[rublye]/ Match "ruby" or "rube"
/laeiou]/ Match any one lowercase vowel
/[0-9]/ Match any digit; same as /[0123456789]/
/la-z)/ Match any lowercase ASCl| letter
/IA-Z)/ Match any uppercase ASCII letter
/[a-zA-20-9]/ Match any of the above
/[Maeiou)/ Match anything other than a lowercase vowel
/[*0-9)/ Match anything other than a digit
Special Character Classes:

Example Description

/./ Match any character except newline
/./m In multiline made . matches newline, too
N\d/ Match a digit: /[0-9]/
N\D/ Match a nondigit: /[*0-9]/
Ns/ Match a whitespace character: /[\t\r\n\f]/
NS/ Match nonwhitespace: /[* \t\r\n\f]/
Nw/ Match a single word character: /[A-Za-20-9_]/
AW/ Match a nonword character: /[*A-Za-20-9_]/
Repetition Cases:

Example Description

Jruby?/ Match "rub" or "ruby": the y is optional
Jruby*/ Match "rub" plus 0 or more ys

Jruby+/ Match "rub" plus 1 or moreys

N\d{3}/ Match exactly 3 digits

Nd{3,}/ Match 3 or more digits

N\d{3,5}/ Match 3, 4, or 5 digits
Nongreedy repetition:

This matches the smallest number of repetitions:

Example Description
J<.*>/ Greedy repetition: matches "<ruby>per|>"
[<.*2>/ Nongreedy: matches "<ruby>" in "<ruby>per|>"

Grouping with parentheses:

Example Description

\D\d+/ No group: + repeats \d
/(\D\d)+/ Grouped: + repeats \D\d pair
/[Rr]uby(,)?)+/ Match "Ruby", "Ruby, ruby, ruby", etc.
Backreferences:
This matches a previously matched group again;

Example Description
/[Rr])uby&\1ails/ Match ruby&rails or Ruby&Rails

DR)N\ Single or double-quoted string. \1 matches whatever the 1stgroup
(ma%ched A\2 matcéhes whatever the 2nd group matched, etc.

Alternatives:
Example Description
[ruby|rube/ Match "ruby" or "rube"
/rubfy|le))/ Match "ruby" or "ruble"
[ruby(1+]\?)/ "ruby" followed by one or more ! or one ?

Anchors:
This need to specify match position

Example Description
/*Ruby/ Match "Ruby" at the start of a string or internal line
/RubyS$/ Match "Ruby" at the end of a string or line
N\ARuby/ Match "Ruby" at the start of a string
/Ruby\z/ Match "Ruby" at the end of a string
/\bRuby\b/ Match "Ruby" at a word boundary
/\brub\B/ \B is nonword boundary: match "rub” in "rube" and "ruby" but notalone
/Ruby(?=1)/ Match "Ruby", if followed by an exclamation point
/Ruby(?11)/ Match "Ruby", if not followed by an exclamation point
Special syntax with parentheses:

Example Description

/R(?#comment)/ Matches "R". All the rest is a comment
/R(?i)uby/ Case-insensitive while matching "uby"
/R(?i:uby)/ Same as above

/rub(?:y|le))/ Group only without creating \1 backreference

Search and Replace:

Some of the most important String methods that use regular expressions are sub and gsub ,
and their in-place variants sub! and gsub!,

All of these methods perform a search-and-replace operation using a Regexp pattern. The sub
& sub! replace the first occurrence of the pattern and gsub & gsub! replace all occurrences.
The sub and gsub return a new string, leaving the original unmodified where as sub! and
gsub! modify the string on which they are called.

Following is the example:

#!/usr/bin/ruby

phone = "2004-959-559 #This is Phone Number"

Delete Ruby-style comments
Phone = phone.sub! (/#.*$/, "m)
puts "Phone Num : #{phone}"

Remove anything other than digits
phone = phone.gsub! (/\D/, "™)

puts "Phone Num : #{phcne}"

This will produce the following result:
Phone Num : 2004-959-559

Phone Num : 2004959559

Following is another example:
#!/usr/bin/ruby

ext = "rails are rails, really good Ruby on Rails"

Change "rails" to "Rails" throughout
text.gsub! ("rails", "Rails")

Capitalize the word "Rails" throughout
ext.gsub! (/\brails\b/, "Rails")

puts "#{text}"
This will produce the following result:
Rails are Rails, really good Ruby on Rails

Ruby Web Applications - CGI Programming

Ruby is a general-purpose language; it can't properly be called a web language at all. Even
so, web applications and web tools in general are among the most common uses of Ruby.

Not only can you write your own SMTP server, FTP daemon, or Web server in Ruby, but you
can also use Ruby for more usual tasks such as CGI programming or as a replacement for
PHP.

Please spend few minutes with CGI Programming Tutorial for more detail on CGI
Programming.

Writing CGI Scripts:

The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby

puts "HITP/1.0 200 OK"
puts "Content-type: text/html\n\n"
puts "<html><body>This is a test</body></html>"

If you call this script fest.cgi and uploaded it to a Unix-based Web hosting provider with the
right permissions, you could use it as a CGI script.

For example, if you have the Web site http://www.example.com/ hosted with a Linux Web
hosting provider and you upload fest.cgi to the main directory and give it execute
permissions, then visiting http://www.example.com/test.cgi should return an HTML page
saying This is a test.

Here when fest.cgi is requested from a Web browser, the Web server looks for zest.cgi on the
Web site, and then executes it using the Ruby interpreter. The Ruby script returns a basic
HTTP header and then returns a basic HTML document.

Using cgi.rb:
Ruby comes with a special library called egi that enables more sophisticated interactions than

those with the preceding CGI script.
Let's create a basic CGI script that uses cgi:
#!/usr/bin/ruby

require 'cgi'
cgi = CGI.new

puts cgi.header
mite "<htmlS><hnAu>Thiae ie a tect</badu><c/html>"

Code No: R1641053 R160 Set No. 1

IV B.Tech | Semester Regular/Supplementary Examinations, Jan/Feb - 2022
WEB TECHNOLOGIES
(Computer Science and Engineering)
Time: 3 hours Max. Marks: 70
Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B

*kkkk
PART-A (14 Marks)
a) Define Cascading of a style sheet? [2]
b) How does one access cookie in a java script? [2]
c) How can you declare attributes in XML? Give an example. [2]
d) How to create a text file in PHP? [2]
e) What are the user defined functions in PERL? [3]
f) How to create an array in RUBY? [3]

PART-B (4x14 = 56 Marks)
a) How can you create HTML documents with frames? Explain. [7]
b) Create a HTML document that displays a table of basketball scores at national
games in which the team names have their respective team colors. The score of
the leading/winning team should appear larger and in a different font than the
losing team. Use CSS. [7]

a) How to use Cookies and session for session tracking? Explain with an example [7]
b) Write in brief about JSP tag extensions and libraries. [7]

a) What is a ‘XML Parser’? Explain in detail how XML data is parsed with an

example. [7]
b) Define client side programming. Explain briefly about AJAX. [7]
a) Define operator. Explain different operators used in PHP. [7]
b) Write a PHP program for a simple calculator. [7]
a) Discuss in brief about the types of data structures supported in Perl. [7]
b) Write a PERL program to implement UNIX ‘password’ program. [7]
a) Describe in brief about multi dimensional arrays in Ruby. [7]
b) Write a ruby script to display grades of a student using hashes. [7]

lofl

Code No: R1641053 R16 Set No. 1

IV B.Tech | Semester Supplementary Examinations, July/Aug - 2021
WEB TECHNOLOGIES
(Computer Science and Engineering)
Time: 3 hours Max. Marks: 70
Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B

*kkkik

PART-A (14 Marks)

a) Define the syntax of creating a list in HTML. [2]
b) What are JSP Implicit Objects? [2]
c) What is XML? List characteristic features of XML. [2]
d) What is PHP? What are the common uses of PHP? [2]
e) How are the cookies handled in PERL. [3]
f) Write in brief about extend and include in Ruby. [3]

PART-B (4x14 = 56 Marks)

a) Discuss in brief about CSS box model. [7]
b) Explain in brief about Conflict resolution in CSS. [7]
a) Explain about object, methods and events in Java Scripts. [7]
b) With an example program, explain form validation concept in JavaScript. [7]

a) Collect the student’s details such as, register number, name, subject and marks
using forms and generate a DTD for this XML document. Display the collected
information in the descending order of marks. Write XML source code for the

above. [7]
b) Explain about various types of XML parser. [7]
a) How to execute a simple query in PHP? Illustrate. [7]
b) Explain about various file operations on text files in PHP. [7]
a) How can you handle the files in Perl? [7]

b) Explain in brief about how to call and identify subroutine in perl with example. [7]

a) Write a Ruby program that uses iterator to find out the length of a string. [7]
b) Discuss in brief about the Rail concept in Ruby. [7]

lofl

	WEB TECHNOLOGIES
	ACADEMIC YEAR 2021-22
	III B.Tech.–II SEMESTER (R19)
	G.K.HAVILAH, Assistant Professor
	Course Objectives:
	Course Outcomes:
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	UNIT V
	Text Books:
	Reference Books:
	Why to Learn AngularJS?
	General Features
	Core Features
	Concepts
	Advantages of AngularJS
	Disadvantages of AngularJS
	AngularJS Directives
	AngularJS – Expressions
	Using numbers
	Using Strings
	Using Object
	Using Array
	Example
	testAngularJS.htm

	Output

	AngularJS Forms
	Input Controls
	Data-Binding
	Example
	Example (1)

	Checkbox
	Example

	Radiobuttons
	Example

	Selectbox
	Example

	An AngularJS Form Example
	Application Code
	Example Explained

	AngularJS Form ValidationAngularJS can validate input data.
	Required
	Example

	E-mail
	Example

	Form State and Input State
	Example

	CSS Classes
	Example
	Example (1)

	Custom Validation
	Example
	Example Explained:

	Validation Example
	Example Explained
	What is Angular JS Expressions?

	AngularJS Strings
	AngularJS Strings (1)
	Angular.JS Objects
	AngularJS Arrays
	What is Node.js
	Features of Node.js

	Node.js Process Model
	Traditional Web Server Model
	Node.js Process Model

	Node.js Module
	Node.js Module Types
	Node.js Core Modules
	Loading Core Modules

	Node.js Local Module
	Writing Simple Module
	Loading Local Module

	Export Module in Node.js
	Export Literals
	Export Object

	Node.js File System
	Reading File
	Writing File
	Open File
	Flags

	Delete File
	Important method of fs module

	Introduction to XML:
	XML Characteristics:
	XML Usage:
	XML features:

	XML document structure
	XML Declaration:
	Processing Instruction:
	Comments:
	Document Type Declaration(DTD):

	XML Elements
	Document Type Declaration (DTD) XML Schema languages:
	1. Document Type Declaration(DTD):
	1. Internal DTD:
	2. External DTD:
	3. Combining Internal and External DTD:

	DTD validation:
	Element Type Declaration:
	Attribute Declaration:
	Attribute types:

	Entity Declaration:
	General Entity Declaration:
	Parameter Entity Declaration:

	2. XML Schema:
	Limitaions of Document Type Declaration (DTD)
	Strengths of XML Schema(XSD)

	XSD Structure:
	XSD Validation:
	Element declaration:
	Declarting simple elements:
	Declarting complex elements:
	 Attribute element properties:
	 Order Indicators
	 Occurence Indicators
	 Group Indicators

	XML Scheme data types:
	XSD String Data Types:
	XSD Date & Time Data Types:
	XSD Numeric Data Types:
	XSD Miscalleneous Data Types
	Advantages

	2. XSLT Elements:
	3. XSLT templates:
	4. Selecting values:
	5. Varaibale and Parameters:
	6. Conditional Processing:
	6. Repetition:
	7. Creating nodes and Sequences:
	Creating element nodes:
	Create attribute node:
	Create text nodes:
	Creating document node:
	Creating processing instructions:
	7.5 Creating comments:

	8. Grouping nodes:
	9. Sorting nodes:
	10. Functions:
	11. Copying nodes:
	12. Numbering:
	Document Object Model (DOM):
	1. Core DOM:
	2. HTML DOM:
	3. XML DOM:

	Using XML processors:
	Difference between DOM and SAX:
	DOM interfaces:
	Common DOM methods:
	Steps to Use DOM parser:
	2. Create a DocumentBuilder
	3. Create a Document from a file or stream
	4. Extract the root element
	5. Examine attributes
	Example for using of DOM parser: class.xml
	ContentHandler Interface
	Attributes Interface
	 String getQName(int index)

	Integrating PHP and AJAX:-
	
	 (1)
	 (2)

	Web Technologies
	What You Should Already Know
	What is PHP?
	What is a PHP File?
	What Can PHP Do?
	Why PHP?
	What Do I Need?
	Use a Web Host With PHP Support
	Set Up PHP on Your Own PC
	Basic PHP Syntax
	Example
	Comments in PHP
	Example (1)
	Do You Remember Algebra From School?
	PHP Variables
	Creating (Declaring) PHP Variables
	PHP is a Loosely Typed Language
	PHP Variable Scope
	Local Scope
	Global Scope
	Static Scope
	Parameters
	String Variables in PHP
	The Concatenation Operator
	The strlen() function
	The strpos() function
	Arithmetic Operators
	Assignment Operators
	Assignment Same as... Description

	Incrementing/Decrementing Operators
	Operator Name Description

	Comparison Operators
	Array Operators
	Conditional Statements
	The if Statement
	The if...else Statement
	The if...elseif....else Statement
	The PHP Switch Statement
	What is an Array?
	Numeric Arrays
	Associative Arrays
	Multidimensional Arrays
	PHP Loops
	The while Loop
	The do...while Statement
	The for Loop
	The foreach Loop
	PHP Built-in Functions
	PHP Functions
	Create a PHP Function
	PHP Functions - Adding parameters
	PHP Functions - Return values
	PHP Form Handling
	Form Validation
	The $_GET Variable
	When to use method="get"?
	The $_POST Variable
	When to use method="post"?
	The PHP $_REQUEST Variable
	What is MySQL?
	PHP + MySQL
	Database Tables
	LastName FirstName Address City

	Queries
	Download MySQL Database
	Facts About MySQL Database
	Create a Connection to a MySQL Database
	Closing a Connection
	Create a Database
	Create a Table
	Primary Keys and Auto Increment Fields
	Insert Data Into a Database Table
	Insert Data From a Form Into a Database
	Select Data From a Database Table
	Display the Result in an HTML Table
	The WHERE clause
	The ORDER BY Keyword
	Order by Two Columns
	Update Data In a Database
	Delete Data In a Database
	Create an ODBC Connection
	Connecting to an ODBC
	Retrieving Records
	Retrieving Fields from a Record
	Closing an ODBC Connection
	An ODBC Example

